1
|
Zhang M, Zhang X, Ma T, Wang C, Zhao J, Gu Y, Zhang Y. Precise subtyping reveals immune heterogeneity for hormone receptor-positive breast cancer. Comput Biol Med 2023; 163:107222. [PMID: 37413851 DOI: 10.1016/j.compbiomed.2023.107222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/18/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
A significant proportion of breast cancer cases are characterized by hormone receptor positivity (HR+). Clinically, the heterogeneity of HR+ breast cancer leads to different therapeutic effects on endocrine. Therefore, definition of subgroups in HR+ breast cancer is important for effective treatment. Here, we have developed a CMBR method utilizing computational functional networks based on DNA methylation to identify conserved subgroups in HR+ breast cancer. Calculated by CMBR, HR+ breast cancer was divided into five subgroups, of which HR+/negative epidermal growth factor receptor-2 (Her2-) was divided into two subgroups, and HR+/positive epidermal growth factor receptor-2 (Her2+) was divided into three subgroups. These subgroups had heterogeneity in the immune microenvironment, tumor infiltrating lymphocyte patterns, somatic mutation patterns and drug sensitivity. Specifically, CMBR identified two subgroups with the "Hot" tumor phenotype. In addition, these conserved subgroups were broadly validated on external validation datasets. CMBR identified the molecular signature of HR+ breast cancer subgroups, providing valuable insights into personalized treatment strategies and management options.
Collapse
Affiliation(s)
- Mengyan Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xingda Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Te Ma
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Cong Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Jiyun Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Yue Gu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Yan Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China; College of Pathology, Qiqihar Medical University, Qiqihar, 161042, China.
| |
Collapse
|
2
|
Ochoa S, Hernández-Lemus E. Molecular mechanisms of multi-omic regulation in breast cancer. Front Oncol 2023; 13:1148861. [PMID: 37564937 PMCID: PMC10411627 DOI: 10.3389/fonc.2023.1148861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Breast cancer is a complex disease that is influenced by the concurrent influence of multiple genetic and environmental factors. Recent advances in genomics and other high throughput biomolecular techniques (-omics) have provided numerous insights into the molecular mechanisms underlying breast cancer development and progression. A number of these mechanisms involve multiple layers of regulation. In this review, we summarize the current knowledge on the role of multiple omics in the regulation of breast cancer, including the effects of DNA methylation, non-coding RNA, and other epigenomic changes. We comment on how integrating such diverse mechanisms is envisioned as key to a more comprehensive understanding of breast carcinogenesis and cancer biology with relevance to prognostics, diagnostics and therapeutics. We also discuss the potential clinical implications of these findings and highlight areas for future research. Overall, our understanding of the molecular mechanisms of multi-omic regulation in breast cancer is rapidly increasing and has the potential to inform the development of novel therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Soledad Ochoa
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Arai N, Hattori N, Yamashita S, Liu YY, Ebata T, Takeuchi C, Takeshima H, Fujii S, Kondo H, Mukai H, Ushijima T. HSD17B4 methylation enhances glucose dependence of BT-474 breast cancer cells and increases lapatinib sensitivity. Breast Cancer Res Treat 2023:10.1007/s10549-023-07013-y. [PMID: 37378696 DOI: 10.1007/s10549-023-07013-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
PURPOSE HER2-positive breast cancer has a high chance of achieving pathological complete response when HSD17B4, responsible for peroxisomal β-oxidation of very long-chain fatty acids (VLCFA) and estradiol, is methylation-silenced. Here, we aimed to identify the underlying molecular mechanism. METHODS Using a HER2-positive breast cancer cell line, BT-474, control and knock-out (KO) clones were obtained. Metabolic characteristics were analyzed using a Seahorse Flux analyzer. RESULTS HSD17B4 KO suppressed cellular proliferation, and enhanced sensitivity to lapatinib approximately tenfold. The KO led to accumulation of VLCFA and a decrease of polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA) and arachidonic acid. HSD17B4 KO increased Akt phosphorylation, possibly via decreased DHA, and genes involved in oxidative phosphorylation (OxPhos) and electron transport chain (ETC) were upregulated. Increased mitochondrial ATP production in the KO cells was confirmed by extracellular flux analyzer. Increased OxPhos led to severe dependence of the KO cells on pyruvate from glycolysis. Suppression of glycolysis by lapatinib led to severe delayed suppression of OxPhos in KO cells. CONCLUSION HSD17B4 KO in BT-474 cells caused a decrease of PUFAs, increased Akt phosphorylation, enhanced glucose dependence of OxPhos, and increased sensitivity to inhibition of HER2, upstream of Akt. This mechanism may be applicable to other HER2-positive glucose-dependent breast cancer cells with HSD17B4 silencing.
Collapse
Affiliation(s)
- Nobuaki Arai
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Surgery, Kyorin University School of Medicine, Tokyo, Japan
| | - Naoko Hattori
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Satoshi Yamashita
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yu-Yu Liu
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Takahiro Ebata
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Chihiro Takeuchi
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Hideyuki Takeshima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Satoshi Fujii
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Haruhiko Kondo
- Department of Surgery, Kyorin University School of Medicine, Tokyo, Japan
| | - Hirofumi Mukai
- Department of Medical Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan.
- Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan.
| |
Collapse
|
4
|
Cortese K, Ponassi M, Profumo A, Coronel Vargas G, Iervasi E, Gagliani MC, Bellese G, Tavella S, Castagnola P. Lipid Metabolism Reprogramming and Trastuzumab Resistance in Breast Cancer Cell Lines Overexpressing the ERBB2 Membrane Receptor. MEMBRANES 2023; 13:540. [PMID: 37367744 DOI: 10.3390/membranes13060540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/09/2023] [Accepted: 05/21/2023] [Indexed: 06/28/2023]
Abstract
Trastuzumab (Tz), an antibody targeting ERBB2, has significantly improved the prognosis for breast cancer (BCa) patients with overexpression of the ERBB2 receptor. However, Tz resistance poses a challenge to patient outcomes. Numerous mechanisms have been suggested to contribute to Tz resistance, and this study aimed to uncover shared mechanisms in in vitro models of acquired BCa Tz resistance. Three widely used ERBB2+ BCa cell lines, adapted to grow in Tz, were examined. Despite investigating potential changes in phenotype, proliferation, and ERBB2 membrane expression in these Tz-resistant (Tz-R) cell lines compared to wild-type (wt) cells, no common alterations were discovered. Instead, high-resolution mass spectrometry analysis revealed a shared set of differentially expressed proteins (DEPs) in Tz-R versus wt cells. Bioinformatic analysis demonstrated that all three Tz-R cell models exhibited modulation of proteins associated with lipid metabolism, organophosphate biosynthesis, and macromolecule methylation. Ultrastructural examination corroborated the presence of altered lipid droplets in resistant cells. These findings strongly support the notion that intricate metabolic adaptations, including lipid metabolism, protein phosphorylation, and potentially chromatin remodeling, may contribute to Tz resistance. The detection of 10 common DEPs across all three Tz-resistant cell lines offers promising avenues for future therapeutic interventions, providing potential targets to overcome Tz resistance and potentially improve patient outcomes in ERBB2+ breast cancer.
Collapse
Affiliation(s)
- Katia Cortese
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Lab, Università di Genova, Via Antonio de Toni 14, 16132 Genova, Italy
| | - Marco Ponassi
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Aldo Profumo
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | | | - Erika Iervasi
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Maria Cristina Gagliani
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Lab, Università di Genova, Via Antonio de Toni 14, 16132 Genova, Italy
| | - Grazia Bellese
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Lab, Università di Genova, Via Antonio de Toni 14, 16132 Genova, Italy
| | - Sara Tavella
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
- DIMES, Department of Experimental Medicine, Cellular Oncology Unit, Università di Genova, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Patrizio Castagnola
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
5
|
Lin TC, Chuang MH, Hsiung CN, Chang PK, Sun CA, Yang T, Chou YC, Hu JM, Hsu CH. Susceptibility to Colorectal Cancer Based on HSD17B4 rs721673 and rs721675 Polymorphisms and Alcohol Intake among Taiwan Biobank Participants: A Retrospective Case Control Study Using the Nationwide Claims Data. J Pers Med 2023; 13:jpm13040576. [PMID: 37108962 PMCID: PMC10146027 DOI: 10.3390/jpm13040576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Colorectal cancer (CRC) is a major public health issue, and there are limited studies on the association between 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4) polymorphism and CRC. We used two national databases from Taiwan to examine whether HSD17B4 rs721673, rs721675, and alcohol intake were independently and interactively correlated with CRC development. We linked the Taiwan Biobank (TWB) participants’ health and lifestyle information and genotypic data from 2012 to 2018 to the National Health Insurance Database (NHIRD) to confirm their medical records. We performed a genome-wide association study (GWAS) using data from 145 new incident CRC cases and matched 1316 healthy, non-CRC individuals. We calculated the odds ratios (OR) and 95% confidence intervals (CI) for CRC based on multiple logistic regression analyses. HSD17B4 rs721673 and rs721675 on chromosome 5 were significantly and positively correlated with CRC (rs721673 A > G, aOR = 2.62, p = 2.90 × 10−8; rs721675 A > T, aOR = 2.61, p = 1.01 × 10−6). Within the high-risk genotypes, significantly higher ORs were observed among the alcohol intake group. Our results demonstrated that the rs721673 and rs721675 risk genotypes of HSD17B4 might increase the risk of CRC development in Taiwanese adults, especially those with alcohol consumption habits.
Collapse
Affiliation(s)
- Tzu-Chiao Lin
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Min-Hua Chuang
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
| | - Chia-Ni Hsiung
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 300, Taiwan
- Data Science Statistical Cooperation Center, Institute of Statistical Science, Academia Sinica, Taipei 114, Taiwan
| | - Pi-Kai Chang
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chien-An Sun
- Department of Public Health, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
| | - Tsan Yang
- Department of Health Business Administration, Meiho University, Pingtung County 912, Taiwan
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Je-Ming Hu
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Chih-Hsiung Hsu
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
- Health Service and Readiness Section, Armed Forces Taoyuan General Hospital, Taoyuan 325, Taiwan
| |
Collapse
|
6
|
Longitudinal Plasma Proteomics-Derived Biomarkers Predict Response to MET Inhibitors for MET-Dysregulated NSCLC. Cancers (Basel) 2023; 15:cancers15010302. [PMID: 36612298 PMCID: PMC9818927 DOI: 10.3390/cancers15010302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
MET inhibitors have shown promising efficacy for MET-dysregulated non-small cell lung cancer (NSCLC). However, quite a few patients cannot benefit from it due to the lack of powerful biomarkers. This study aims to explore the potential role of plasma proteomics-derived biomarkers for patients treated with MET inhibitors using mass spectrometry. We analyzed the plasma proteomics from patients with MET dysregulation (including MET amplification and MET overexpression) treated with MET inhibitors. Thirty-three MET-dysregulated NSCLC patients with longitudinal 89 plasma samples were included. We classified patients into the PD group and non-PD group based on clinical response. The baseline proteomic profiles of patients in the PD group were distinct from those in the non-PD group. Through protein screening, we found that a four-protein signature (MYH9, GNB1, ALOX12B, HSD17B4) could predict the efficacy of patients treated with MET inhibitors, with an area under the curve (AUC) of 0.93, better than conventional fluorescence in situ hybridization (FISH) or immunohistochemistry (IHC) tests. In addition, combining the four-protein signature with FISH or IHC test could also reach higher predictive performance. Further, the combined signature could predict progression-free survival for MET-dysregulated NSCLC (p < 0.001). We also validated the performance of the four-protein signature in another cohort of plasma using an enzyme-linked immunosorbent assay. In conclusion, the four plasma protein signature (MYH9, GNB1, ALOX12B, and HSD17B4 proteins) might play a substitutable or complementary role to conventional MET FISH or IHC tests. This exploration will help select patients who may benefit from MET inhibitors.
Collapse
|
7
|
Di Cara F, Savary S, Kovacs WJ, Kim P, Rachubinski RA. The peroxisome: an up-and-coming organelle in immunometabolism. Trends Cell Biol 2023; 33:70-86. [PMID: 35788297 DOI: 10.1016/j.tcb.2022.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/27/2022]
Abstract
Peroxisomes are essential metabolic organelles, well known for their roles in the metabolism of complex lipids and reactive ionic species. In the past 10 years, peroxisomes have also been cast as central regulators of immunity. Lipid metabolites of peroxisomes, such as polyunsaturated fatty acids (PUFAs), are precursors for important immune mediators, including leukotrienes (LTs) and resolvins. Peroxisomal redox metabolism modulates cellular immune signaling such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. Additionally, peroxisomal β-oxidation and ether lipid synthesis control the development and aspects of the activation of both innate and adaptive immune cells. Finally, peroxisome number and metabolic activity have been linked to inflammatory diseases. These discoveries have opened avenues of investigation aimed at targeting peroxisomes for therapeutic intervention in immune disorders, inflammation, and cancer.
Collapse
Affiliation(s)
- Francesca Di Cara
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada.
| | - Stéphane Savary
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Werner J Kovacs
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology in Zurich (ETH Zürich), Zurich, Switzerland
| | - Peter Kim
- Cell Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | | |
Collapse
|
8
|
Pan X, Yue L, Ban J, Ren L, Chen S. Effects of Semaglutide on Cardiac Protein Expression and Cardiac Function of Obese Mice. J Inflamm Res 2022; 15:6409-6425. [PMID: 36452054 PMCID: PMC9704011 DOI: 10.2147/jir.s391859] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Using proteomics to study the effect of semaglutide on cardiac protein expression in obese mice. Assessment of the effect of semaglutide on cardiac function in obese mice. Materials and Methods The mice were randomly divided into three groups: the control group (WC), the high-fat group (WF), and the high-fat diet with semaglutide intervention group (WS). Serum samples were collected, and lipids, blood glucose, inflammatory and oxidative stress markers, and cardiac ultrasound, were examined. The cardiac weight of each group of mice was measured, and pathological alterations were examined. Inflammation and oxidative stress levels in heart tissue were evaluated. The labeling coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) platform was used to find differentially expressed proteins (DEPs) and screen for related pathways and key proteins in a proteomics study. Results Semaglutide greatly alleviated obesity-induced lipid metabolism abnormalities, improved cardiac ventricular wall thickening, and significantly reduced myocardial collagen content in obese mice. Semaglutide significantly reduces obesity-induced inflammation and oxidative stress. There were 64 DEPs in the WF/WC group, with 39 upregulated proteins and 25 downregulated proteins. The WS/WC group, on the other hand, had 83 DEPs, including 57 upregulated and 26 downregulated proteins. Following functional analysis, DEPs were shown to be largely associated with lipid metabolism and peroxisomes. Apolipoprotein A-II, catalase, diazepam-binding inhibitor, paraoxonase-1, and hydroxysteroid 17-dehydrogenase-4 were all upregulated in the WF group but significantly downregulated in the WS group. A high-fat diet increases the expression of lipid synthesis and transport proteins while increasing inflammation and oxidative stress damage. Conclusion Semaglutide decreases lipid synthesis alleviates inflammation and oxidative stress and prevents lipid peroxidation and cardiac impairment.
Collapse
Affiliation(s)
- Xiaoyu Pan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Lin Yue
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Jiangli Ban
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Lin Ren
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Shuchun Chen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
- Correspondence: Shuchun Chen, Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China, Tel +86 31185988406, Fax +86 31185988406, Email
| |
Collapse
|
9
|
Rodrigues-Ferreira S, Nahmias C. Predictive biomarkers for personalized medicine in breast cancer. Cancer Lett 2022; 545:215828. [PMID: 35853538 DOI: 10.1016/j.canlet.2022.215828] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 12/14/2022]
Abstract
Breast cancer is one of the most frequent malignancies among women worldwide. Based on clinical and molecular features of breast tumors, patients are treated with chemotherapy, hormonal therapy and/or radiotherapy and more recently with immunotherapy or targeted therapy. These different therapeutic options have markedly improved patient outcomes. However, further improvement is needed to fight against resistance to treatment. In the rapidly growing area of research for personalized medicine, predictive biomarkers - which predict patient response to therapy - are essential tools to select the patients who are most likely to benefit from the treatment, with the aim to give the right therapy to the right patient and avoid unnecessary overtreatment. The search for predictive biomarkers is an active field of research that includes genomic, proteomic and/or machine learning approaches. In this review, we describe current strategies and innovative tools to identify, evaluate and validate new biomarkers. We also summarize current predictive biomarkers in breast cancer and discuss companion biomarkers of targeted therapy in the context of precision medicine.
Collapse
Affiliation(s)
- Sylvie Rodrigues-Ferreira
- Gustave Roussy Institute, INSERM U981, Prédicteurs moléculaires et nouvelles cibles en oncologie, Villejuif, France; LabEx LERMIT, Université Paris-Saclay, 92296 Châtenay-Malabry, France; Inovarion, 75005, Paris, France
| | - Clara Nahmias
- Gustave Roussy Institute, INSERM U981, Prédicteurs moléculaires et nouvelles cibles en oncologie, Villejuif, France; LabEx LERMIT, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
| |
Collapse
|
10
|
Ma J, Chen W, Hu Z, Huang J, Guo C, Zou C, Yang G. Rare ocular toxicity induced by pertuzumab/QL1209 in healthy chinese subjects: case reports and whole-exome sequencing analysis. Invest New Drugs 2022; 40:861-867. [PMID: 35596833 DOI: 10.1007/s10637-022-01256-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/10/2022] [Indexed: 11/27/2022]
Abstract
Pertuzumab is a recombinant anti-HER2 humanized monoclonal antibody widely used for the adjuvant treatment of HER2-positive breast cancer. Its safety is well established with the most common adverse effects being diarrhea and rash. To our knowledge, severe pertuzumab-induced ocular adverse events have never been reported. Herein, we describe several cases of pertuzumab/QL1209 (pertuzumab biosimilar)-induced blurred vision in healthy Chinese male subjects after a single injection of 420 mg pertuzumab/QL1209. Persistent optic nerve damage and vision loss occurred in the most severe case even after ophthalmic treatment. We conducted whole-exome sequencing (WES) of DNA samples from 5 cases and 13 controls to analyze the potential genetic factors and identified some associated variants (rs80303690 in RBM24, rs117375173 in CASR, rs1805097 in IRS2, and rs1227049 in CDH23). Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Ontology (GO) terms gene enrichment analyses were carried out for differentially expressed genes clustered in the PI3K/AKT/mTOR and Ras/Raf/MAPK signaling pathways, which were exactly activated by HER2 phosphorylation. In summary, this is the first report describing the occurrence of ocular toxicity induced by pertuzumab in the Chinese population and exploring the possible genetic mechanisms. These findings could provide evidence for clinicians to raise concerns about the risk of ocular toxicity with the clinical use of pertuzumab.
Collapse
Affiliation(s)
- Junlong Ma
- Center of Clinical Pharmacology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Wenjing Chen
- Center of Clinical Pharmacology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zhanqing Hu
- Center of Clinical Pharmacology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Jie Huang
- Center of Clinical Pharmacology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Chengxian Guo
- Center of Clinical Pharmacology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Chan Zou
- Center of Clinical Pharmacology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Guoping Yang
- Center of Clinical Pharmacology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
11
|
Zhang CD, Takeshima H, Sekine S, Yamashita S, Liu YY, Hattori N, Abe H, Yamashita H, Fukuda M, Imamura Y, Ushiku T, Katai H, Makino H, Watanabe M, Seto Y, Ushijima T. Prediction of tissue origin of adenocarcinomas in the esophagogastric junction by DNA methylation. Gastric Cancer 2022; 25:336-345. [PMID: 34557982 DOI: 10.1007/s10120-021-01252-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Prediction of tissue origin of esophagogastric junction (EGJ) adenocarcinomas can be important for therapeutic decision, but no molecular marker is available. Here, we aimed to develop such a marker taking advantage of tissue-specific profiles of DNA methylation. METHODS DNA methylation profiles of gastric adenocarcinomas (GACs) were obtained by an Infinium HumanMethylation450 BeadChip array, and those of esophageal adenocarcinoma (EACs) were obtained from the TCGA database. DNA from formalin-fixed paraffin-embedded (FFPE) samples was analyzed by bisulfite pyrosequencing. RESULTS In the screening set, 51 of 145,841 CpG sites in CpG islands were methylated at significantly higher levels in 30 GACs compared to those in 30 EACs. Among them, SLC46A3 and cg09177106 were unmethylated in all the 30 EACs. Predictive powers of these two markers were successfully confirmed in an independent validation set (18 GACs and 18 EACs) (SLC46A3, sensitivity = 77.8%, specificity = 100%; cg09177106, sensitivity = 83.3%, specificity = 94.4%), and could be applied to FFPE samples (37 GACs and 18 EACs) (SLC46A3, P = 0.0001; cg09177106, P = 0.0028). On the other hand, EAC-specific markers informative in the FFPE samples could not be isolated. Using these GAC-specific markers, nine of 46 (19.6%) TCGA EGJ adenocarcinomas were predicted to be GACs. CONCLUSIONS Two GAC-specific markers, SLC46A3 and cg09177106, had a high specificity for identifying the tissue origin of EGJ adenocarcinoma.
Collapse
Affiliation(s)
- Chun-Dong Zhang
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Hideyuki Takeshima
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shigeki Sekine
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Satoshi Yamashita
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yu-Yu Liu
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Naoko Hattori
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hiroyuki Abe
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Hiroharu Yamashita
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Masahide Fukuda
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yu Imamura
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Hitoshi Katai
- Department of Gastric Surgery, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Hiroshi Makino
- Department of Surgery, Tama-Nagayama Hospital, Nippon Medical School, Tokyo, 206-8512, Japan
| | - Masayuki Watanabe
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
12
|
Multi-Omic Approaches to Breast Cancer Metabolic Phenotyping: Applications in Diagnosis, Prognosis, and the Development of Novel Treatments. Cancers (Basel) 2021; 13:cancers13184544. [PMID: 34572770 PMCID: PMC8470181 DOI: 10.3390/cancers13184544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BC) is characterized by high disease heterogeneity and represents the most frequently diagnosed cancer among women worldwide. Complex and subtype-specific gene expression alterations participate in disease development and progression, with BC cells known to rewire their cellular metabolism to survive, proliferate, and invade. Hence, as an emerging cancer hallmark, metabolic reprogramming holds great promise for cancer diagnosis, prognosis, and treatment. Multi-omics approaches (the combined analysis of various types of omics data) offer opportunities to advance our understanding of the molecular changes underlying metabolic rewiring in complex diseases such as BC. Recent studies focusing on the combined analysis of genomics, epigenomics, transcriptomics, proteomics, and/or metabolomics in different BC subtypes have provided novel insights into the specificities of metabolic rewiring and the vulnerabilities that may guide therapeutic development and improve patient outcomes. This review summarizes the findings of multi-omics studies focused on the characterization of the specific metabolic phenotypes of BC and discusses how they may improve clinical BC diagnosis, subtyping, and treatment.
Collapse
|
13
|
Ueda K, Daito K, Ushijima H, Yane Y, Yoshioka Y, Tokoro T, Iwamoto M, Wada T, Makutani Y, Kawamura J. Laparoscopic complete mesocolic excision with central vascular ligation for splenic flexure colon cancer: short- and long-term outcomes. Surg Endosc 2021; 36:2661-2670. [PMID: 34031741 PMCID: PMC8921072 DOI: 10.1007/s00464-021-08559-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 05/11/2021] [Indexed: 12/01/2022]
Abstract
Background Complete mesocolic excision (CME) with central vascular ligation (CVL) for colon cancer is an essential procedure for improved oncologic outcomes after surgery. Laparoscopic surgery for splenic flexure colon cancer was recently adopted due to a greater understanding of surgical anatomy and improvements in surgical techniques and innovative surgical devices. Methods We retrospectively analyzed the data of patients with splenic flexure colon cancer who underwent laparoscopic CME with CVL at our institution between January 2005 and December 2017. Results Forty-five patients (4.8%) were enrolled in this study. Laparoscopic CME with CVL was successfully performed in all patients. The median operative time was 178 min, and the median estimated blood loss was 20 g. Perioperative complications developed in 6 patients (13.3%). The median postoperative hospital stay was 9 days. According to the pathological report, the median number of harvested lymph nodes was 15, and lymph node metastasis developed in 14 patients (31.1%). No metastasis was observed at the root of the middle colic artery or the inferior mesenteric artery. The median follow-up period was 49 months. The cumulative 5-year overall survival and disease-free survival rates were 85.9% and 84.7%, respectively. The cancer-specific survival rate in stage I-III patients was 92.7%. Recurrence was observed in 5 patients (11.1%), including three patients with peritoneal dissemination and two patients with distant metastasis. Conclusions Laparoscopic CME with CVL for splenic flexure colon cancer appears to be oncologically safe and feasible based on the short- and long-term outcomes in our study. However, it is careful to introduce this procedure to necessitate the anatomical understandings and surgeon’s skill. The appropriate indications must be established with more case registries because our experience is limited.
Collapse
Affiliation(s)
- Kazuki Ueda
- Department of Surgery, Kindai University Faculty of Medicine, 377-2, Ohnohigashi, Osaka Sayama, Osaka, 589-8511, Japan.
| | - Koji Daito
- Department of Surgery, Kindai University Faculty of Medicine, 377-2, Ohnohigashi, Osaka Sayama, Osaka, 589-8511, Japan
| | - Hokuto Ushijima
- Department of Surgery, Kindai University Faculty of Medicine, 377-2, Ohnohigashi, Osaka Sayama, Osaka, 589-8511, Japan
| | - Yoshinori Yane
- Department of Surgery, Kindai University Faculty of Medicine, 377-2, Ohnohigashi, Osaka Sayama, Osaka, 589-8511, Japan
| | - Yasumasa Yoshioka
- Department of Surgery, Kindai University Faculty of Medicine, 377-2, Ohnohigashi, Osaka Sayama, Osaka, 589-8511, Japan
| | - Tadao Tokoro
- Department of Surgery, Kindai University Faculty of Medicine, 377-2, Ohnohigashi, Osaka Sayama, Osaka, 589-8511, Japan
| | - Masayoshi Iwamoto
- Department of Surgery, Kindai University Faculty of Medicine, 377-2, Ohnohigashi, Osaka Sayama, Osaka, 589-8511, Japan
| | - Toshiaki Wada
- Department of Surgery, Kindai University Faculty of Medicine, 377-2, Ohnohigashi, Osaka Sayama, Osaka, 589-8511, Japan
| | - Yusuke Makutani
- Department of Surgery, Kindai University Faculty of Medicine, 377-2, Ohnohigashi, Osaka Sayama, Osaka, 589-8511, Japan
| | - Junichiro Kawamura
- Department of Surgery, Kindai University Faculty of Medicine, 377-2, Ohnohigashi, Osaka Sayama, Osaka, 589-8511, Japan
| |
Collapse
|