1
|
Yang C, Zheng C, Zhuang Y, Xu S, Li J, Hu C. Synaptic Vesicle-Related Proteins and Ubiquilin 2 in Cortical Synaptosomes Mediate Cognitive Impairment in Vascular Dementia Rats. Mol Neurobiol 2025; 62:1415-1432. [PMID: 38990251 DOI: 10.1007/s12035-024-04327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024]
Abstract
Synaptic dysfunction is considered the best neuropathological correlate of cognitive decline in vascular dementia (VaD). However, the alterations of synaptic proteins at the synaptosomal level in VaD remain unclear. In this study, a VaD model was established in male rats using bilateral common carotid artery occlusion (2VO). We performed a novel object recognition task to evaluate cognitive impairment. Immunohistochemistry was used to assess the expression of neuron-specific nuclear binding protein (NeuN). Brain synaptosomes were isolated and subjected to label-free proteomic analysis to quantify and identify the synaptic features of differentially expressed proteins (DEPs). Synaptic and hub protein expression was detected in synaptosomes using western blotting. We found that male rats with VaD presented impaired memory and decreased NeuN protein expression in the cortex. Synaptosome proteomic analysis revealed 604 DEPs, with 493 and 111 markedly downregulated and upregulated proteins, respectively. KEGG analysis and SynGO annotation revealed that the synaptic vesicle (SV) cycle may be a key signaling pathway in VaD. Hub protein analysis of the main nodes in the protein network identified UBQLN2 and SV-related proteins, including CLTC, SNAP91, AP2S1, CLTA, VAMP2, EPN1, UBQLN2, AP2B1, AP2A2, and AP2M1. Western blotting showed that the levels of SV2A, CLTC, AP2S1, and VAMP2 decreased in the synaptosomes of 2VO rats, while UBQLN2 expression significantly increased. Our results suggest that the disruption in the presynaptic SV cycle is a key event in male rats with VaD, which could be characterized by the aberrant SV2A expression. SV-related proteins and UBQLN2 may be essential in synaptopathy. Thus, targeting the specific molecular markers in synaptosomes may be critical for the development of mechanism-directed therapies against VaD.
Collapse
Affiliation(s)
- Cuicui Yang
- Department of Clinical Trial Center, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Beijing, 100070, China.
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
| | - Cengceng Zheng
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yuming Zhuang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Shuhong Xu
- Department of Clinical Trial Center, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Beijing, 100070, China
| | - Jian Li
- Department of Clinical Trial Center, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Beijing, 100070, China
| | - Chaoying Hu
- Phase I Clinical Trial Unit, Beijing Ditan Hospital of Capital Medical University, No. 8 East Jingshun Road, Beijing, 100015, China.
| |
Collapse
|
2
|
Le S, Xu F, Luo Z, Shi W, Lu S, Zhang Z, Guo Z, Xu W, Yang M, Li T, Li X, Liang K, Zhu L. Integrated analysis of chromatin and transcriptomic profiling of the striatum after cerebral hypoperfusion in mice. BMC Genomics 2025; 26:71. [PMID: 39856551 PMCID: PMC11762485 DOI: 10.1186/s12864-025-11256-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Vascular cognitive impairment (VCI) is a significant contributor to dementia, yet the precise mechanisms underlying the cognitive decline associated with chronic cerebral hypoperfusion (CCH) remain unclear. This study investigated the molecular and epigenetic changes in the striatum, a brain region critical for motor function and cognition, following chronic hypoperfusion using a bilateral common carotid artery stenosis (BCAS) model in mice. METHODS RNA-seq was utilized to identify differentially expressed genes (DEGs) associated with hypoperfusion. In parallel, ATAC-seq was used to assess changes in chromatin accessibility within the striatum, providing insight into the epigenome and potential regulatory mechanisms. The integration of these datasets allowed us to correlate chromatin accessibility with transcriptional activity and to identify key transcription factors driving the observed gene expression changes. RESULTS Analysis of striatum-specific transcriptome revealed significant upregulation of immune response genes, particularly type II interferon signaling, and downregulation of neural activation pathways. Analysis of striatum-specific epigenome showed increased chromatin accessibility at promoters of immune-related genes. Integrated analysis highlighted PU.1 as a key transcription factor in upregulated pathways, while neural pathways lacked epigenetic regulation, revealing distinct molecular responses in the striatum following chronic hypoperfusion. CONCLUSIONS Our findings indicate that upregulated pathways in the striatum following BCAS-induced CCH are driven by epigenetic changes, while downregulated pathways occur independently of these modifications. Additionally, PU.1 plays a critical role in mediating immune responses, offering a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Shijia Le
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fengyiyang Xu
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi Luo
- Department of Surgery, Shanghai Deji Hospital, Qingdao University, Shanghai, 200331, China
| | - Weihao Shi
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shuangshuang Lu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zengyu Zhang
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Zimin Guo
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Wenshi Xu
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Mingqi Yang
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tianyi Li
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xu Li
- Department of Vascular Surgery, Zhongshan Hospital, Institute of Vascular Surgery, National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China.
| | - Kun Liang
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Lei Zhu
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
3
|
Predtechenskaya EV, Rogachev AD, Melnikova PM. The Characteristics of the Metabolomic Profile in Patients with Parkinson's Disease and Vascular Parkinsonism. Acta Naturae 2024; 16:27-37. [PMID: 39877011 PMCID: PMC11771845 DOI: 10.32607/actanaturae.27511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/21/2024] [Indexed: 01/31/2025] Open
Abstract
The gradually increasing age of the world population implies that the prevalence of neurodegenerative diseases also continues to rise. These diseases are characterized by a progressive loss of cognitive and motor functions. Parkinson's disease, which involves the gradual death of specialized neural tissue, is a striking example of a neurodegenerative process. The pathomorphological analysis shows that chronic cerebral ischemia is accompanied by extensive complex neurodegeneration; parkinsonism is its clinical manifestation in 20-30% of cases. Although Parkinson's disease and vascular parkinsonism are similar, these two pathologies have fundamentally different etiopathogeneses. But their set of differential diagnosis traits is confined to some features of the neurological status. There currently exist no diagnostic markers for individual neurodegenerative pathologies or the neurodegeneration phenomenon in general. Metabolomic profiling can be a promising means for finding a unique "fingerprint" of the disease. Identifying the biomarkers of various neurodegenerative diseases will help shorten the time to the diagnosis, forecast the course of the disease, and personalize the therapeutic approach. This review summarizes and compares the current concepts of metabolomics research into Parkinson's disease and vascular parkinsonism, as well as the respective animal models.
Collapse
Affiliation(s)
| | - A. D. Rogachev
- Novosibirsk State University, Novosibirsk, 630090 Russian Federation
| | - P. M. Melnikova
- Novosibirsk State University, Novosibirsk, 630090 Russian Federation
| |
Collapse
|
4
|
Wu Y, Cai J, Pang B, Cao L, He Q, He Q, Zhang A. Bioinformatic Identification of Signaling Pathways and Hub Genes in Vascular Dementia. ACTAS ESPANOLAS DE PSIQUIATRIA 2024; 52:83-98. [PMID: 38622006 PMCID: PMC11015743 DOI: 10.62641/aep.v52i2.1601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
BACKGROUND Vascular dementia (VaD) is a prevalent neurodegenerative disease characterized by cognitive impairment due to cerebrovascular factors, affecting a significant portion of the aging population and highlighting the critical need to understand specific targets and mechanisms for effective prevention and treatment strategies. We aimed to identify pathways and crucial genes involved in the progression of VaD through bioinformatics analysis and subsequently validate these findings. METHODS We conducted differential expression analysis, Weighted Gene Co-expression Network Analysis (WGCNA), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and Protein-Protein Interaction (PPI) analysis. We utilized pheochromocytoma 12 (PC12) cells to create an in vitro oxygen-glucose deprivation (OGD) model. We investigated the impact of overexpression and interference of adrenoceptor alpha 1D (ADRA1D) on OGD PC12 cells using TdT-mediated dUTP nick-end labeling (TUNEL), reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot (WB), and Fluo-3-pentaacetoxymethyl ester (Fluo-3 AM) analysis. RESULTS We found 187 differentially expressed genes (DEGs) in the red module that were strongly associated with VaD and were primarily enriched in vasoconstriction, G protein-coupled amine receptor activity, and neuroactive ligand-receptor interaction, mitogen-activated protein kinase (MAPK) signaling pathway, and cell adhesion. Among these pathways, we identified ADRA1D as a gene shared by vasoconstriction, G protein-coupled amine receptor activity, and neuroactive ligand-receptor interaction. The TUNEL assay revealed a significant decrease in PC12 cell apoptosis with ADRA1D overexpression (p < 0.01) and a significant increase in apoptosis upon silencing ADRA1D (p < 0.01). RT-qPCR and WB analysis revealed elevated ADRA1D expression (p < 0.001) and decreased phospholipase C beta (PLCβ) and inositol 1,4,5-trisphosphate receptor (IP3R) expression (p < 0.05) with ADRA1D overexpression. Moreover, the Fluo-3 AM assessment indicated significantly lower intracellular Ca2+ levels with ADRA1D overexpression (p < 0.001). Conversely, interference with ADRA1D yielded opposite results. CONCLUSION Our study provides a new perspective on the pathogenic mechanisms of VaD and potential avenues for therapeutic intervention. The results highlight the role of ADRA1D in modulating cellular responses to OGD and VaD, suggesting its potential as a target for VaD treatment.
Collapse
Affiliation(s)
- Yuanhua Wu
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, 550002 Guiyang, Guizhou, China
| | - Jing Cai
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, 550002 Guiyang, Guizhou, China
| | - Bo Pang
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, 550002 Guiyang, Guizhou, China
| | - Liping Cao
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, 550002 Guiyang, Guizhou, China
| | - Qiankun He
- The First School of Clinical Medicine of Guizhou University of Traditional Chinese Medicine, 550001 Guiyang, Guizhou, China
| | - Qiansong He
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, 550002 Guiyang, Guizhou, China
| | - Anbang Zhang
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, 550002 Guiyang, Guizhou, China
| |
Collapse
|
5
|
Wu F, Zhang J, Wang Q, Liu W, Zhang X, Ning F, Cui M, Qin L, Zhao G, Liu D, Lv S, Xu Y. Identification of immune-associated genes in vascular dementia by integrated bioinformatics and inflammatory infiltrates. Heliyon 2024; 10:e26304. [PMID: 38384571 PMCID: PMC10879030 DOI: 10.1016/j.heliyon.2024.e26304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024] Open
Abstract
Objective Dysregulation of the immune system plays a vital role in the pathological process of vascular dementia, and this study aims to spot critical biomarkers and immune infiltrations in vascular dementia employing a bioinformatics approach. Methods We acquired gene expression profiles from the Gene Expression Database. The gene expression data were analyzed using the bioinformatics method to identify candidate immune-related central genes for the diagnosis of vascular dementia. and the diagnostic value of nomograms and Receiver Operating Characteristic (ROC) curves were evaluated. We also examined the role of the VaD hub genes. Using the database and potential therapeutic drugs, we predicted the miRNA and lncRNA controlling the Hub genes. Immune cell infiltration was initiated to examine immune cell dysregulation in vascular dementia. Results 1321 immune genes were included in the combined immune dataset, and 2816 DEGs were examined in GSE122063. Twenty potential genes were found using differential gene analysis and co-expression network analysis. PPI network design and functional enrichment analysis were also done using the immune system as the main subject. To create the nomogram for evaluating the diagnostic value, four potential core genes were chosen by machine learning. All four putative center genes and nomograms have a solid diagnostic value (AUC ranged from 0.81 to 0.92). Their high confidence level became unquestionable by validating each of the four biomarkers using a different dataset. According to GeneMANIA and GSEA enrichment investigations, the pathophysiology of VaD is strongly related to inflammatory responses, drug reactions, and central nervous system degeneration. The data and Hub genes were used to construct a ceRNA network that includes three miRNAs, 90 lncRNA, and potential VaD therapeutics. Immune cells with varying dysregulation were also found. Conclusion Using bioinformatic techniques, our research identified four immune-related candidate core genes (HMOX1, EBI3, CYBB, and CCR5). Our study confirms the role of these Hub genes in the onset and progression of VaD at the level of immune infiltration. It predicts potential RNA regulatory pathways control VaD progression, which may provide ideas for treating clinical disease.
Collapse
Affiliation(s)
- Fangchao Wu
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Junling Zhang
- Shandong Medicine Technician College, Taian 271000, China
| | - Qian Wang
- Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Wenxin Liu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Xinlei Zhang
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Fangli Ning
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Mengmeng Cui
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Lei Qin
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Guohua Zhao
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Di Liu
- Department of Neurology, Dongping County People's Hospital, Taian, 271000, China
| | - Shi Lv
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| |
Collapse
|
6
|
Zhang Z, Guo Z, Tu Z, Yang H, Li C, Hu M, Zhang Y, Jin P, Hou S. Cortex-specific transcriptome profiling reveals upregulation of interferon-regulated genes after deeper cerebral hypoperfusion in mice. Front Physiol 2023; 14:1056354. [PMID: 36994418 PMCID: PMC10040763 DOI: 10.3389/fphys.2023.1056354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Background: Chronic cerebral hypoperfusion (CCH) is commonly accompanied by brain injury and glial activation. In addition to white matter lesions, the intensity of CCH greatly affects the degree of gray matter damage. However, little is understood about the underlying molecular mechanisms related to cortical lesions and glial activation following hypoperfusion. Efforts to investigate the relationship between neuropathological alternations and gene expression changes support a role for identifying novel molecular pathways by transcriptomic mechanisms.Methods: Chronic cerebral ischemic injury model was induced by the bilateral carotid artery stenosis (BCAS) using 0.16/0.18 mm microcoils. Cerebral blood flow (CBF) was evaluated using laser speckle contrast imaging (LSCI) system. Spatial learning and memory were assessed by Morris water maze test. Histological changes were evaluated by Hematoxylin staining. Microglial activation and neuronal loss were further examined by immunofluorescence staining. Cortex-specific gene expression profiling analysis was performed in sham and BCAS mice, and then validated by quantitative RT-PCR and immunohistochemistry (IHC).Results: In our study, compared with the sham group, the right hemisphere CBF of BCAS mice decreased to 69% and the cognitive function became impaired at 4 weeks postoperation. Besides, the BCAS mice displayed profound gray matter damage, including atrophy and thinning of the cortex, accompanied by neuronal loss and increased activated microglia. Gene set enrichment analysis (GSEA) revealed that hypoperfusion-induced upregulated genes were significantly enriched in the pathways of interferon (IFN)-regulated signaling along with neuroinflammation signaling. Ingenuity pathway analysis (IPA) predicted the importance of type I IFN signaling in regulating the CCH gene network. The obtained RNA-seq data were validated by qRT-PCR in cerebral cortex, showing consistency with the RNA-seq results. Also, IHC staining revealed elevated expression of IFN-inducible protein in cerebral cortex following BCAS-hypoperfusion.Conclusion: Overall, the activation of IFN-mediated signaling enhanced our understanding of the neuroimmune responses induced by CCH. The upregulation of IFN-regulated genes (IRGs) might exert a critical impact on the progression of cerebral hypoperfusion. Our improved understanding of cortex-specific transcriptional profiles will be helpful to explore potential targets for CCH.
Collapse
Affiliation(s)
- Zengyu Zhang
- Department of Neurology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Zimin Guo
- Department of Neurology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Zhilan Tu
- Department of Neurology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Hualan Yang
- Department of Neurology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Chao Li
- School of Pharmacy, Hubei University of Science and Technology, Hubei, China
| | - Mengting Hu
- Department of Neurology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Yuan Zhang
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Pengpeng Jin
- Department of Chronic Disease Management, Shanghai Pudong Hospital, Fudan University, Shanghai, China
- *Correspondence: Shuangxing Hou, ; Pengpeng Jin,
| | - Shuangxing Hou
- Department of Neurology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
- *Correspondence: Shuangxing Hou, ; Pengpeng Jin,
| |
Collapse
|
7
|
Mittli D, Tukacs V, Ravasz L, Csősz É, Kozma T, Kardos J, Juhász G, Kékesi KA. LPS-induced acute neuroinflammation, involving interleukin-1 beta signaling, leads to proteomic, cellular, and network-level changes in the prefrontal cortex of mice. Brain Behav Immun Health 2023; 28:100594. [PMID: 36713475 PMCID: PMC9880243 DOI: 10.1016/j.bbih.2023.100594] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/12/2022] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Neuroinflammation induced by peripheral infections leads to various neuropsychiatric symptoms both in humans and laboratory animals, e.g., to the manifestation of sickness behavior that resembles some features of clinical depression. However, in addition to depression-like behavior, there are other symptoms of acute systemic inflammation that can be associated with the impairment of prefrontal cortex (PFC)-regulated cognitive functions. Thus, we investigated the electrophysiological and proteomic alterations of the PFC using brain slices and the lipopolysaccharide (LPS) model of acute peripheral infection in male mice. Based on the gene expression differences of the coreceptor (Il1rap) of interleukin-1 beta (IL-1β) between neuron types in our previous single-cell sequencing dataset, we first compared the electrophysiological effects of IL-1β on PFC pyramidal cells and interneurons. We found that pyramidal cells are more responsive to IL-1β, as could be presumed from our transcriptomic data. To examine the possible circuit-level correlates of the cellular changes, frontal electroencephalographic (EEG) activity and fronto-occipital functional connectivity were analyzed in LPS-treated mice and significant changes were found in the fronto-occipital EEG correlation and coherence in the delta and high-gamma frequency bands. The upregulation of the prefrontal IL-1 system (IL-1β and its receptor) after LPS treatment was revealed by immunoassays simultaneously with the observed EEG changes. Furthermore, we investigated the LPS-induced alterations of the synaptic proteome in the PFC using 2-D differential gel electrophoresis and mass spectrometry and found 48 altered proteins mainly related to cellular signaling, cytoskeletal organization, and carbohydrate/energy metabolism. Thus, our results indicate remarkable electrophysiological and molecular changes in the PFC related to acute systemic inflammation that may explain some of the concomitant behavioral and physiological symptoms.
Collapse
Affiliation(s)
- Dániel Mittli
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Physiology and Neurobiology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Vanda Tukacs
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Lilla Ravasz
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- CRU Hungary Ltd., Göd, Hungary
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gábor Juhász
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- CRU Hungary Ltd., Göd, Hungary
- InnoScience Ltd., Mátranovák, Hungary
| | - Katalin Adrienna Kékesi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Physiology and Neurobiology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- InnoScience Ltd., Mátranovák, Hungary
| |
Collapse
|
8
|
Tukacs V, Mittli D, Hunyadi-Gulyás É, Hlatky D, Medzihradszky KF, Darula Z, Nyitrai G, Czurkó A, Juhász G, Kardos J, Kékesi KA. Chronic Cerebral Hypoperfusion-Induced Disturbed Proteostasis of Mitochondria and MAM Is Reflected in the CSF of Rats by Proteomic Analysis. Mol Neurobiol 2023; 60:3158-3174. [PMID: 36808604 PMCID: PMC10122630 DOI: 10.1007/s12035-023-03215-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/04/2023] [Indexed: 02/23/2023]
Abstract
Declining cerebral blood flow leads to chronic cerebral hypoperfusion which can induce neurodegenerative disorders, such as vascular dementia. The reduced energy supply of the brain impairs mitochondrial functions that could trigger further damaging cellular processes. We carried out stepwise bilateral common carotid occlusions on rats and investigated long-term mitochondrial, mitochondria-associated membrane (MAM), and cerebrospinal fluid (CSF) proteome changes. Samples were studied by gel-based and mass spectrometry-based proteomic analyses. We found 19, 35, and 12 significantly altered proteins in the mitochondria, MAM, and CSF, respectively. Most of the changed proteins were involved in protein turnover and import in all three sample types. We confirmed decreased levels of proteins involved in protein folding and amino acid catabolism, such as P4hb and Hibadh in the mitochondria by western blot. We detected reduced levels of several components of protein synthesis and degradation in the CSF as well as in the subcellular fractions, implying that hypoperfusion-induced altered protein turnover of brain tissue can be detected in the CSF by proteomic analysis.
Collapse
Affiliation(s)
- Vanda Tukacs
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dániel Mittli
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Hunyadi-Gulyás
- Laboratory of Proteomics Research, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Dávid Hlatky
- Preclinical Imaging Center, Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Katalin F Medzihradszky
- Laboratory of Proteomics Research, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Zsuzsanna Darula
- Laboratory of Proteomics Research, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary.,Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, Szeged, Hungary
| | - Gabriella Nyitrai
- Preclinical Imaging Center, Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - András Czurkó
- Preclinical Imaging Center, Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Gábor Juhász
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,InnoScience Ltd., Mátranovák, Hungary
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Katalin A Kékesi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary. .,Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary. .,InnoScience Ltd., Mátranovák, Hungary. .,Department of Physiology and Neurobiology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
9
|
Liu Y, Li S, Liu D, Wei H, Wang X, Yan F. Exploration of the potential mechanism of Pushen capsule in the treatment of vascular dementia based on network pharmacology and experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115632. [PMID: 35964821 DOI: 10.1016/j.jep.2022.115632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/03/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
HEADINGS ETHNOPHARMACOLOGICAL RELEVANCE Pushen capsule is a traditional Chinese medicine compound functioning as 'stimulating blood circulation to remove blood stasis', which widely used to treat hyperlipidemia. Recent clinical research showed that Pushen capsule ameliorated cognitive function in patients with vascular mild cognitive impairment. AIM OF THE STUDY Explore the potential mechanism of Pushen capsule in vascular dementia (VaD) using network pharmacology analysis and experimental verification. MATERIALS AND METHODS Active ingredients and their related targets of Pushen capsule, and VaD-related targets were searched in public databases. Core targets, potential functions and mechanisms of Pushen capsule on VaD were predicted by protein-protein interaction (PPI), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. In vivo experiments were conducted to demonstrate the potential mechanisms of Pushen capsule in the treatment of VaD. RESULTS In total, 155 active ingredients, 273 related targets of Pushen capsule, and 1035 VaD-related targets were selected from the public databases. 147 common targets of Pushen capsule against VaD were obtained. The PPI network, GO and KEGG enrichment analyses revealed that some core targets and signaling pathways are related to inflammation. The experimental results showed that Pushen capsule treatment largely alleviated hippocampal glial activation, accelerated the polarization of activated microglia from the M1 to the M2 phenotype and reduced associated inflammatory factor expression to protect against VaD-induced neuronal loss, synaptic protein reduction and cognitive defects in a dose-dependent manner. Moreover, Pushen capsule reduced the mRNA expression of NF-κB p65; and STAT1. CONCLUSION Our study demonstrates that Pushen capsule alleviates hippocampal neuroinflammation to protect against VaD-induced cognitive impairment in a dose-dependent manner. The neuroprotective effect of Pushen capsule on VaD might be regulated by the NF-κB; and JAK-STAT pathway.
Collapse
Affiliation(s)
- Yun Liu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Shuo Li
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Dandan Liu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, China; The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Jiangsu, 212300, China
| | - Hong Wei
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xingzhi Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Fuling Yan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, China; Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
10
|
Cholinergic Internal and Projection Systems of Hippocampus and Neocortex Critical for Early Spatial Memory Consolidation in Normal and Chronic Cerebral Hypoperfusion Conditions in Rats with Different Abilities to Consolidation: The Role of Cholinergic Interneurons of the Hippocampus. Biomedicines 2022; 10:biomedicines10071532. [PMID: 35884837 PMCID: PMC9313465 DOI: 10.3390/biomedicines10071532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 12/05/2022] Open
Abstract
The role of cholinergic projection systems of the neocortex and hippocampus in memory consolidation in healthy and neuropathological conditions has been subject to intensive research. On the contrary, the significance of cholinergic cortical and hippocampal interneurons in learning has hardly been studied. We aimed to evaluate the role of both cholinergic projection neurons and interneurons of the neocortex and hippocampus at an early stage of spatial memory consolidation (2s1) in normal and chronic brain hypoperfusion conditions. Control rats and rats subjected to permanent two-vessel occlusion were trained with the Morris water maze, and the activity of membrane-bound and water-soluble choline acetyltransferase was evaluated in the sub-fractions of ‘light’ and ‘heavy’ synaptosomes of the neocortex and hippocampus, in which the presynapses of cholinergic projections and interneurons, respectively, are concentrated. Animals were ranked into quartiles according to their performance on stage 2s1. We found: (1) quartile-dependent cholinergic composition of 2s1 function and dynamics of cholinergic synaptic plasticity under cerebral hypoperfusion; (2) cholinergic hippocampal interneurons are necessary for successful 2s1 consolidation; (3) cholinergic neocortical interneurons and projections can be critical for 2s1 consolidation in less learning rats. We conclude that targeted modulation of cholinergic synaptic activity in the hippocampus and neocortex can be effective in reversing the cognitive disturbance of cerebral hypoperfusion. We discuss the possible ways to restore the impaired spatial memory 2s1 in the presence of cerebral hypoperfusion.
Collapse
|
11
|
Chrishtop V, Nikonorova V, Gutsalova A, Rumyantseva T, Dukhinova M, Salmina А. Systematic comparison of basic animal models of cerebral hypoperfusion. Tissue Cell 2022; 75:101715. [DOI: 10.1016/j.tice.2021.101715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
|
12
|
Shu J, Wei W, Zhang L. Identification of Molecular Signatures and Candidate Drugs in Vascular Dementia by Bioinformatics Analyses. Front Mol Neurosci 2022; 15:751044. [PMID: 35221911 PMCID: PMC8873373 DOI: 10.3389/fnmol.2022.751044] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/17/2022] [Indexed: 01/30/2023] Open
Abstract
Vascular dementia (VaD) is considered to be the second most common form of dementia after Alzheimer’s disease, and no specific drugs have been approved for VaD treatment. We aimed to identify shared transcriptomic signatures between the frontal cortex and temporal cortex in VaD by bioinformatics analyses. Gene ontology and pathway enrichment analyses, protein–protein interaction (PPI) and hub gene identification, hub gene–transcription factor interaction, hub gene–microRNA interaction, and hub gene–drug interaction analyses were performed. We identified 159 overlapping differentially expressed genes (DEGs) between the frontal cortex and temporal cortex that were enriched mainly in inflammation and innate immunity, synapse pruning, regeneration, positive regulation of angiogenesis, response to nutrient levels, and positive regulation of the digestive system process. We identified 10 hub genes in the PPI network (GNG13, CD163, C1QA, TLR2, SST, C1QB, ITGB2, CCR5, CRH, and TAC1), four central regulatory transcription factors (FOXC1, CREB1, GATA2, and HINFP), and four microRNAs (miR-27a-3p, miR-146a-5p, miR-335-5p, and miR-129-2-3p). Hub gene–drug interaction analysis found four drugs (maraviroc, cenicriviroc, PF-04634817, and efalizumab) that could be potential drugs for VaD treatment. Together, our results may contribute to understanding the underlying mechanisms in VaD and provide potential targets and drugs for therapeutic intervention.
Collapse
|