1
|
Gu L, Liu M, Zhang Y, Zhou H, Wang Y, Xu ZX. Telomere-related DNA damage response pathways in cancer therapy: prospective targets. Front Pharmacol 2024; 15:1379166. [PMID: 38910895 PMCID: PMC11190371 DOI: 10.3389/fphar.2024.1379166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Maintaining the structural integrity of genomic chromosomal DNA is an essential role of cellular life and requires two important biological mechanisms: the DNA damage response (DDR) mechanism and telomere protection mechanism at chromosome ends. Because abnormalities in telomeres and cellular DDR regulation are strongly associated with human aging and cancer, there is a reciprocal regulation of telomeres and cellular DDR. Moreover, several drug treatments for DDR are currently available. This paper reviews the progress in research on the interaction between telomeres and cellular DNA damage repair pathways. The research on the crosstalk between telomere damage and DDR is important for improving the efficacy of tumor treatment. However, further studies are required to confirm this hypothesis.
Collapse
Affiliation(s)
- Liting Gu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Yuning Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Naeem MT, Usman AH, Ali S, Raza H, Shah AN, Mahmmoud Fadelallah Eljack M. Intravesical mitomycin C efficacy in acidic and alkaline urinary pH: impact on recurrence-free survival rate after TURBT. Ann Med Surg (Lond) 2023; 85:5323-5327. [PMID: 37915689 PMCID: PMC10617880 DOI: 10.1097/ms9.0000000000001350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/17/2023] [Indexed: 11/03/2023] Open
Abstract
Background Urinary bladder tumor recurrence following transurethral resection of bladder tumor (TURBT) is a common issue. This study aims to determine how urine alkalinization affects bladder tumor recurrence after surgery. Materials and methods Sixty patients receiving mitomycin C (MMC) therapy after TURBT were divided into two groups based on mean pH values. Twenty-six patients were in group A, whose urine pH was below 5.5. However, there were 34 patients in group B, and their urine pH was higher than 5.5. Both groups of patients were given intravesical MMC once weekly for 6 weeks following TURBT. A cystoscopy was performed as a follow-up at 3, 6, and 12 months. Urine pH and the recurrence-free survival rate were compared using Kaplan-Meier survival analysis and the COX proportional hazard model. Results The mean time to tumor recurrence in group A (intravesical MMC in acidic urine) and group B (intravesical MMC in alkaline urine) was 12.48 versus 16.84 months, respectively. Alkaline urine pH was identified as an independent predictor of preventing the recurrence of superficial bladder tumors by univariate COX regression analysis. Age, sex, and mean tumor size did not affect the likelihood of tumor recurrence. However, smoking had an association with increased tumor recurrence. Conclusion Tumor recurrence post-TURBT is delayed in patients with alkaline urine pH. Smoking is an independent risk factor for bladder tumors.
Collapse
Affiliation(s)
| | | | - Sarmad Ali
- Al-Shifa Hospital, Hospital Road, Mandi Bahuddin
| | - Hassan Raza
- Gujranwala Teaching Hospital, Gujranwala, Pakistan
| | | | | |
Collapse
|
3
|
Hu X, Sun C, Ren X, Ge S, Xie C, Li X, Zhu Y, Ding H. Contrast-enhanced Ultrasound Combined With Elastography for the Evaluation of Muscle-invasive Bladder Cancer in Rats. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:1999-2011. [PMID: 36896871 DOI: 10.1002/jum.16216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVES By comparing with the control group, we evaluated the usefulness of contrast-enhanced ultrasound (CEUS) combined with elastography for the assessment of muscle invasion by bladder cancer (MIBC) in a Sprague-Dawley (SD) rat model. METHODS In the experimental group, 40 SD rats developed in situ bladder cancer (BLCA) in response to N-methyl-N-nitrosourea treatment, whereas 40 SD rats were included in the control group for comparison. We compared PI, Emean , microvessel density (MVD), and collagen fiber content (CFC) between the two groups. In the experimental group, Bland-Altman test was used to assess the relationships between various parameters. The largest Youden value was used as the cut-off point, and binomial logistic regression analysis was performed to analyze the PI and Emean . Receiver operating characteristic (ROC) curve analysis was performed to determine the diagnostic power of parameters, individually and in combination. RESULTS The PI, Emean , MVD, and CFC were significantly lower in the control group than in the experimental group (P < .05). The PI, Emean , MVD, and CFC were significantly higher for MIBC than for non-muscle-invasive bladder cancer (P < .05). There were significant correlations between PI and MVD, and between Emean and CFC. The diagnostic efficiency analysis showed PI had the highest sensitivity, CFC had the highest specificity, and PI + Emean had the highest diagnostic efficacy. CONCLUSION CEUS and elastography can distinguish lesions from normal tissue. PI, MVD, Emean , and CFC were useful for the detection of BLCA myometrial invasion. The comprehensive utilization of PI and Emean improved diagnostic accuracy and have clinical application.
Collapse
Affiliation(s)
- Xing Hu
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuanyu Sun
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinping Ren
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shengyang Ge
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chunmei Xie
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiangyu Li
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingfeng Zhu
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hong Ding
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Alì A, Leibowitz D, Bhatt N, Doubrovin M, Spina CS, Bates-Pappas GE, Taub RN, McKiernan JM, Mintz A, Molotkov A. Preliminary efficacy of [ 90Y]DOTA-biotin-avidin radiotherapy against non-muscle invasive bladder cancer. Eur J Nucl Med Mol Imaging 2023; 50:692-700. [PMID: 36350400 DOI: 10.1007/s00259-022-06027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE Bladder cancer represents 3% of all new cancer diagnoses per year. We propose intravesical radionuclide therapy using the β-emitter 90Y linked to DOTA-biotin-avidin ([90Y]DBA) to deliver short-range radiation against non-muscle invasive bladder cancer (NMIBC). MATERIAL AND METHODS Image-guided biodistribution of intravesical DBA was investigated in an animal model by radiolabeling DBA with the 68Ga and dynamic microPET imaging following intravesical infusion of [68Ga]DBA for up to 4 h and post-necropsy γ-counting of organs. The antitumor activity of [90Y]DBA was investigated using an orthotopic MB49 murine bladder cancer model. Mice were injected with luciferase-expressing MB49 cells and treated via intravesical administration with 9.2 MBq of [90Y]DBA or unlabeled DBA 3 days after the tumor implantation. Bioluminescence imaging was conducted after tumor implantation to monitor the bladder tumor growth. In addition, we investigated the effects of [90Y]DBA radiation on urothelial histology with immunohistochemistry analysis of bladder morphology. RESULTS Our results demonstrated that DBA is contained in the bladder for up to 4 h after intravesical infusion. A single dose of [90Y]DBA radiation treatment significantly reduced growth of MB49 bladder carcinoma. Attaching 90Y-DOTA-biotin to avidin prevents its re-absorption into the blood and distribution throughout the rest of the body. Furthermore, immunohistochemistry demonstrated that [90Y]DBA radiation treatment did not cause short-term damage to urothelium at day 10, which appeared similar to the normal urothelium of healthy mice. CONCLUSION Our data demonstrates the potential of intravesical [90Y]DBA as a treatment for non-muscle invasive bladder cancer.
Collapse
Affiliation(s)
- Alessandra Alì
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Dev Leibowitz
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Nikunj Bhatt
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Mikhail Doubrovin
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Catherine S Spina
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Gleneara E Bates-Pappas
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, 10021, USA
| | - Robert N Taub
- Department of Medicine (Retired), Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - James M McKiernan
- Department of Urology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Andrei Molotkov
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| |
Collapse
|
5
|
Bangalore DM, Tessmer I. Direct hOGG1-Myc interactions inhibit hOGG1 catalytic activity and recruit Myc to its promoters under oxidative stress. Nucleic Acids Res 2022; 50:10385-10398. [PMID: 36156093 PMCID: PMC9561264 DOI: 10.1093/nar/gkac796] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
The base excision repair (BER) glycosylase hOGG1 (human oxoguanine glycosylase 1) is responsible for repairing oxidative lesions in the genome, in particular oxidised guanine bases (oxoG). In addition, a role of hOGG1 in transcription regulation by recruitment of various transcription factors has been reported. Here, we demonstrate direct interactions between hOGG1 and the medically important oncogene transcription factor Myc that is involved in transcription initiation of a large number of genes including inflammatory genes. Using single molecule atomic force microscopy (AFM), we reveal recruitment of Myc to its E-box promoter recognition sequence by hOGG1 specifically under oxidative stress conditions, and conformational changes in hOGG1-Myc complexes at oxoG lesions that suggest loading of Myc at oxoG lesions by hOGG1. Importantly, our data show suppression of hOGG1 catalytic activity in oxoG repair by Myc. Furthermore, mutational analyses implicate the C28 residue in hOGG1 in oxidation induced protein dimerisation and suggest a role of hOGG1 dimerisation under oxidising conditions in hOGG1-Myc interactions. From our data we develop a mechanistic model for Myc recruitment by hOGG1 under oxidising, inflammatory conditions, which may be responsible for the observed enhanced gene expression of Myc target genes.
Collapse
Affiliation(s)
- Disha M Bangalore
- Rudolf Virchow Center, University of Würzburg, Josef Schneider Str. 2, 97080 Würzburg, Germany
| | - Ingrid Tessmer
- Rudolf Virchow Center, University of Würzburg, Josef Schneider Str. 2, 97080 Würzburg, Germany
| |
Collapse
|
6
|
Somuncu B, Ekmekcioglu A, Antmen FM, Ertuzun T, Deniz E, Keskin N, Park J, Yazici IE, Simsek B, Erman B, Yin W, Erman B, Muftuoglu M. Targeting mitochondrial DNA polymerase gamma for selective inhibition of MLH1 deficient colon cancer growth. PLoS One 2022; 17:e0268391. [PMID: 35657956 PMCID: PMC9165880 DOI: 10.1371/journal.pone.0268391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
Synthetic lethality in DNA repair pathways is an important strategy for the selective treatment of cancer cells without harming healthy cells and developing cancer-specific drugs. The synthetic lethal interaction between the mismatch repair (MMR) protein, MutL homolog 1 (MLH1), and the mitochondrial base excision repair protein, DNA polymerase γ (Pol γ) was used in this study for the selective treatment of MLH1 deficient cancers. Germline mutations in the MLH1 gene and aberrant MLH1 promoter methylation result in an increased risk of developing many cancers, including nonpolyposis colorectal and endometrial cancers. Because the inhibition of Pol γ in MLH1 deficient cancer cells provides the synthetic lethal selectivity, we conducted a comprehensive small molecule screening from various databases and chemical drug library molecules for novel Pol γ inhibitors that selectively kill MLH1 deficient cancer cells. We characterized these Pol γ inhibitor molecules in vitro and in vivo, and identified 3,3'-[(1,1'-Biphenyl)-4',4'-diyl)bis(azo)]bis[4-amino-1-naphthalenesulfonic acid] (congo red; CR; Zinc 03830554) as a high-affinity binder to the Pol γ protein and potent inhibitor of the Pol γ strand displacement and one-nucleotide incorporation DNA synthesis activities in vitro and in vivo. CR reduced the cell proliferation of MLH1 deficient HCT116 human colon cancer cells and suppressed HCT116 xenograft tumor growth whereas it did not affect the MLH1 proficient cell proliferation and xenograft tumor growth. CR caused mitochondrial dysfunction and cell death by inhibiting Pol γ activity and oxidative mtDNA damage repair, increasing the production of reactive oxygen species and oxidative mtDNA damage in MLH1 deficient cells. This study suggests that the Pol γ inhibitor, CR may be further evaluated for the MLH1 deficient cancers' therapy.
Collapse
Affiliation(s)
- Berna Somuncu
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Aysegul Ekmekcioglu
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Fatma Merve Antmen
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Tugce Ertuzun
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Emre Deniz
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Nazli Keskin
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Joon Park
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ilgu Ece Yazici
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Busra Simsek
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Batu Erman
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, Istanbul, Turkey
| | - Whitney Yin
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Burak Erman
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Meltem Muftuoglu
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
7
|
O'Neill E, Cornelissen B. Know thy tumour: Biomarkers to improve treatment of molecular radionuclide therapy. Nucl Med Biol 2022; 108-109:44-53. [PMID: 35276447 DOI: 10.1016/j.nucmedbio.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 10/18/2022]
Abstract
Molecular radionuclide therapy (MRT) is an effective treatment for both localised and disseminated tumours. Biomarkers can be used to identify potential subtypes of tumours that are known to respond better to standard MRT protocols. These enrolment-based biomarkers can further be used to develop dose-response relationships using image-based dosimetry within these defined subtypes. However, the biological identity of the cancers treated with MRT are commonly not well-defined, particularly for neuroendocrine neoplasms. The biological heterogeneity of such cancers has hindered the establishment of dose-responses and minimum tumour dose thresholds. Biomarkers could also be used to determine normal tissue MRT dose limits and permit greater injected doses of MRT in patients. An alternative approach is to understand the repair capacity limits of tumours using radiobiology-based biomarkers within and outside patient cohorts currently treated with MRT. It is hoped that by knowing more about tumours and how they respond to MRT, biomarkers can provide needed dimensionality to image-based biodosimetry to improve MRT with optimized protocols and personalised therapies.
Collapse
Affiliation(s)
- Edward O'Neill
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK.
| | - Bart Cornelissen
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK; Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
8
|
Zhang J, Li M, Chen Z, OuYang J, Ling Z. Efficacy of Bladder Intravesical Chemotherapy with Three Drugs for Preventing Non-Muscle-Invasive Bladder Cancer Recurrence. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:2360717. [PMID: 34888022 PMCID: PMC8651429 DOI: 10.1155/2021/2360717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 11/18/2022]
Abstract
Epirubicin, gemcitabine, and pirarubicin are widely used as first-line drugs for intravesical chemotherapy to prevent tumor recurrence after transurethral bladder tumor resection for non-muscle-invasive bladder cancer (NMIBC). However, which drug is better is less discussed. A total of 335 NMIBC patients administered intravesical chemotherapy underwent transurethral bladder tumor resection (TURBT) in our hospital from October 2015 to October 2019. After TURBT, all the patients received standard intravesical chemotherapy. Through clinical data collection and telephone follow-up, the tumor recurrence and adverse reactions of all patients after bladder perfusion treatment were counted. Recurrence was defined as new tumor appearance in the bladder. Of the 335 patients who underwent intravesical chemotherapy, 109 patients received epirubicin and 114 patients and 112 patients were given gemcitabine and pirarubicin, respectively. According to the general information of the patients, the patients were divided into intermediate-risk and high-risk bladder cancer and compared separately. There was no statistical difference in clinical and pathological features between different groups (P > 0.05). The recurrence rate of intermediate-risk bladder cancer patients shows no difference between three groups (P > 0.05). As for the high-risk bladder cancer patients, it is found that the 1-year recurrence rate between three groups was not statistically significant (P > 0.05), whereas the 2-year recurrence rate of patients given gemcitabine (9.87%) was significantly lower than that of epirubicin (25.37%) and pirarubicin (24.32%), and the difference was statistically significant (P < 0.017, Bonferroni adjusted P value). The Kaplan-Meier survival curves showed that the recurrence-free survival rate of patients received gemcitabine was significantly higher than that of the other two groups. Comparing the incidence of adverse reactions during the infusion of the three groups of patients, the differences were not statistically significant (P > 0.05). In patients with high-risk non-muscle-invasive bladder cancer, the application of gemcitabine intravesical chemotherapy is related with a relatively lower recurrence rate but similar incidence of adverse reactions.
Collapse
Affiliation(s)
- Jianglei Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Miao Li
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ze Chen
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jun OuYang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zhixin Ling
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
9
|
Ge J, Ngo LP, Kaushal S, Tay IJ, Thadhani E, Kay JE, Mazzucato P, Chow DN, Fessler JL, Weingeist DM, Sobol RW, Samson LD, Floyd SR, Engelward BP. CometChip enables parallel analysis of multiple DNA repair activities. DNA Repair (Amst) 2021; 106:103176. [PMID: 34365116 PMCID: PMC8439179 DOI: 10.1016/j.dnarep.2021.103176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 12/28/2022]
Abstract
DNA damage can be cytotoxic and mutagenic, and it is directly linked to aging, cancer, and other diseases. To counteract the deleterious effects of DNA damage, cells have evolved highly conserved DNA repair pathways. Many commonly used DNA repair assays are relatively low throughput and are limited to analysis of one protein or one pathway. Here, we have explored the capacity of the CometChip platform for parallel analysis of multiple DNA repair activities. Taking advantage of the versatility of the traditional comet assay and leveraging micropatterning techniques, the CometChip platform offers increased throughput and sensitivity compared to the traditional comet assay. By exposing cells to DNA damaging agents that create substrates of Base Excision Repair, Nucleotide Excision Repair, and Non-Homologous End Joining, we show that the CometChip is an effective method for assessing repair deficiencies in all three pathways. With these applications of the CometChip platform, we expand the utility of the comet assay for precise, high-throughput, parallel analysis of multiple DNA repair activities.
Collapse
Affiliation(s)
- Jing Ge
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Le P Ngo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Simran Kaushal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, United States
| | - Ian J Tay
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Elina Thadhani
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Jennifer E Kay
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Patrizia Mazzucato
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Danielle N Chow
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Jessica L Fessler
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - David M Weingeist
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Robert W Sobol
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, United States; University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, United States
| | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Scott R Floyd
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27514, United States
| | - Bevin P Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
10
|
Rosser CJ, Tikhonenkov S, Nix JW, Chan OTM, Ianculescu I, Reddy S, Soon-Shiong P. Safety, Tolerability, and Long-Term Clinical Outcomes of an IL-15 analogue (N-803) Admixed with Bacillus Calmette-Guérin (BCG) for the Treatment of Bladder Cancer. Oncoimmunology 2021; 10:1912885. [PMID: 33996264 PMCID: PMC8096327 DOI: 10.1080/2162402x.2021.1912885] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Intravesical BCG is active against non-muscle invasive bladder cancer (NMIBC), but bladder cancer will recur and even progress in a significant number of patients. To improve the response rate, N-803, an IL-15 superagonist was administered in combination with BCG. To evaluate the safety and efficacy associated with the use of intravesical N-803 and BCG in patients with BCG-naïve NMIBC. This phase 1b clinical trial used a 3 + 3 dose-escalation design. Participants were enrolled from July 2014 and July 2015, with follow-up and analyses through January 15, 2021. Eligibility criteria included histologically confirmed non-muscle invasive urothelial carcinoma of intermediate or high risk who had not received prior treatment with intravesical BCG (ie, BCG-naïve). All 9 participants met the eligibility criteria, received treatment according to the protocol, and were included in all analyses. Treatment was done once weekly for 6 consecutive weeks with bladder infusion of the standard dose of BCG, 50 mg/instillation, in combination with increasing doses of N-803 (100, 200, or 400 µg N-803 per instillation). No DLTs were noted in any of the dose cohorts. All adverse events (AEs) were manageable and less than grade 3. During the 2-year follow-up, all 9 participants were disease free. Furthermore, 6 y after treatment, all 9 participants (100%) were disease free with no evidence of disease progression and an intact bladder. This phase 1b trial found the combination of intravesical N-803 and BCG to be associated with modest toxic effects, low immunogenicity, and substantial prolonged antitumoral activity; phase 2 trials are in progress.
Collapse
Affiliation(s)
- Charles J Rosser
- Clinical & Translational Research Program, University of Hawaii Cancer Center,Honolulu, Hawaii
| | - Sergei Tikhonenkov
- Clinical & Translational Research Program, University of Hawaii Cancer Center,Honolulu, Hawaii
| | - Jeffrey W Nix
- Department of Urology, University of Alabama, Birmingham, Alabama
| | - Owen T M Chan
- Clinical & Translational Research Program, University of Hawaii Cancer Center,Honolulu, Hawaii
| | | | - Sandeep Reddy
- NantHealth Inc, Culver City, California.,ImmunityBio, Inc., Culver City, California
| | | |
Collapse
|