1
|
Georgiou N, Tzani A, Vavougyiou K, Papadopoulos C, Eleftheriadis N, Šket P, Tzeli D, Niemi-Aro T, Detsi A, Mavromoustakos T. Synthesis of Anti-Inflammatory Drugs' Chalcone Derivatives and a Study of Their Conformational Properties Through a Combination of Nuclear Magnetic Resonance Spectroscopy and Molecular Modeling. Pharmaceuticals (Basel) 2025; 18:88. [PMID: 39861151 PMCID: PMC11768734 DOI: 10.3390/ph18010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/01/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND In this study, two chalcone analogs were synthesized through in silico and experimental methods, and their potential to inhibit the lipoxygenase enzyme, which plays a role in the inflammation pathway, was assessed. Specifically, this study is a continuation of previous research in which chalcone derivatives were synthesized and characterized. OBJECTIVES/METHODS In the current work, we present the re-synthesis of two chalcones, with a focus on their docking studies, NMR analysis, and dynamic simulations. The structure of each chalcone was elucidated through a combination of Nuclear Magnetic Resonance (NMR) and Density Functional Theory (DFT). The substituent effect on the absorption spectrum of the two chalcone derivatives was studied. RESULTS A "LOX-chalcone" complex, predicted by docking studies, was further examined using molecular dynamics (MD) simulations to evaluate the stability of the complex. After fully characterizing the "LOX-chalcone" complexes in silico, the atomic details of each chalcone's interaction with LOX-1 and 5-LOX were revealed through Saturation Transfer Difference (STD) NMR (Nuclear Magnetic Resonance). Finally, their selectivity profile was investigated against human 15-LOX-1 and general Lipoxidase activity. CONCLUSIONS The in silico methods suggest that chalcones could be promising lead compounds for drug designs targeting the LOX enzyme.
Collapse
Affiliation(s)
- Nikitas Georgiou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 11571 Athens, Greece; (N.G.); (K.V.)
| | - Andromachi Tzani
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (A.T.); (A.D.)
| | - Kyriaki Vavougyiou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 11571 Athens, Greece; (N.G.); (K.V.)
| | - Christos Papadopoulos
- Department of Chemistry, University of Crete, Voutes, 70013 Heraklion, Greece; (C.P.); (N.E.)
| | - Nikolaos Eleftheriadis
- Department of Chemistry, University of Crete, Voutes, 70013 Heraklion, Greece; (C.P.); (N.E.)
| | - Primož Šket
- Slovenian NMR Centre, National Institute of Chemistry, SI-1001 Ljubljana, Slovenia;
| | - Demeter Tzeli
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 11571 Athens, Greece;
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Tuomas Niemi-Aro
- Institute of Biotechnology, Helsinki Institute of Life Sciences, Viikinkaari 1, P.O. Box 65, University of Helsinki, 00014 Helsinki, Finland;
| | - Anastasia Detsi
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (A.T.); (A.D.)
| | - Thomas Mavromoustakos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 11571 Athens, Greece; (N.G.); (K.V.)
| |
Collapse
|
2
|
Fatima A, Choudhary MI, Siddiqui S, Zafar H, Hu K, Wahab AT. Insights into the molecular interactions between urease subunit gamma from MRSA and drugs: an integrative approach by STD-NMR and molecular docking studies. RSC Adv 2024; 14:30859-30872. [PMID: 39355333 PMCID: PMC11443414 DOI: 10.1039/d4ra01732c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/07/2024] [Indexed: 10/03/2024] Open
Abstract
Staphylococcus aureus, an important human pathogen, is developing resistance against a wide range of antibiotics. The antibiotic resistance in S. aureus has created the need to identify new drug targets, and to develop new drugs candidates. In the current study, urease subunit gamma from Methicillin Resistant Staphylococcus aureus (MRSA 252) was studied as a potential drug target, through protein-ligand interactions. Urease is the main virulence factor of MRSA, it catalyzes the conversion of urea into ammonia that is required for the survival of bacteria during acid stress. Its subunits and accessory proteins can serve as targets for drug discovery and development. Present study describes the cloning, expression, and purification of urease subunit gamma from MRSA 252. This was followed by screening of 100 US-FDA approved drugs against this protein using STD-NMR spectroscopy and among them, 15 drugs showed significant STD effects. In silico studies predicted that these drugs interacted mainly via non-covalent interactions, such as hydrogen bond, aromatic hydrogen bonding, π-π stacking, π-cation interactions, salt bridges, and halogen bonding. The thermal stability of UreA in the presence of these interacting drugs was evaluated using differential scanning fluorimetry (DSF), which revealed a significant effect on the T m of UreA. Additionally, the inhibitory effects of these drugs on urease activity were assessed using a urease inhibition assay with Jack bean urease. The results showed that these drugs possess enzyme inhibitory activity, potentially impacting the survival of S. aureus. These hits need further biochemical and mechanistic studies to validate their therapeutic potential against the MRSA infections.
Collapse
Affiliation(s)
- Anum Fatima
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - M Iqbal Choudhary
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah-22254 Saudi Arabia
| | - Shezaib Siddiqui
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - Humaira Zafar
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - Kaifeng Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine Chengdu Sichuan-611137 China
| | - Atia-Tul Wahab
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| |
Collapse
|
3
|
Nussinov R, Jang H. The value of protein allostery in rational anticancer drug design: an update. Expert Opin Drug Discov 2024; 19:1071-1085. [PMID: 39068599 PMCID: PMC11390313 DOI: 10.1080/17460441.2024.2384467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Allosteric drugs are advantageous. However, they still face hurdles, including identification of allosteric sites that will effectively alter the active site. Current strategies largely focus on identifying pockets away from the active sites into which the allosteric ligand will dock and do not account for exactly how the active site is altered. Favorable allosteric inhibitors dock into sites that are nearby the active sites and follow nature, mimicking diverse allosteric regulation strategies. AREAS COVERED The following article underscores the immense significance of allostery in drug design, describes current allosteric strategies, and especially offers a direction going forward. The article concludes with the authors' expert perspectives on the subject. EXPERT OPINION To select a productive venue in allosteric inhibitor development, we should learn from nature. Currently, useful strategies follow this route. Consider, for example, the mechanisms exploited in relieving autoinhibition and in harnessing allosteric degraders. Mimicking compensatory, or rescue mutations may also fall into such a thesis, as can molecular glues that capture features of scaffolding proteins. Capturing nature and creatively tailoring its mimicry can continue to innovate allosteric drug discovery.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
4
|
Beernink PT, Di Carluccio C, Marchetti R, Cerofolini L, Carillo S, Cangiano A, Cowieson N, Bones J, Molinaro A, Paduano L, Fragai M, Beernink BP, Gulati S, Shaughnessy J, Rice PA, Ram S, Silipo A. Gonococcal Mimitope Vaccine Candidate Forms a Beta-Hairpin Turn and Binds Hydrophobically to a Therapeutic Monoclonal Antibody. JACS AU 2024; 4:2617-2629. [PMID: 39055159 PMCID: PMC11267536 DOI: 10.1021/jacsau.4c00359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
The spread of multidrug-resistant strains of Neisseria gonorrhoeae, the etiologic agent of gonorrhea, represents a global health emergency. Therefore, the development of a safe and effective vaccine against gonorrhea is urgently needed. In previous studies, murine monoclonal antibody (mAb) 2C7 was raised against gonococcal lipooligosaccharide (LOS). mAb 2C7 elicits complement-dependent bactericidal activity against gonococci, and its glycan epitope is expressed by almost every clinical isolate. Furthermore, we identified a peptide, cyclic peptide 2 (CP2) that mimicked the 2C7 LOS epitope, elicited bactericidal antibodies in mice, and actively protected in a mouse vaginal colonization model. In this study, we performed structural analyses of mAb 2C7 and its complex with the CP2 peptide by X-ray crystallography, NMR spectroscopy, and molecular dynamics (MD) simulations. The crystal structure of Fab 2C7 bound to CP2 showed that the peptide adopted a beta-hairpin conformation and bound the Fab primarily through hydrophobic interactions. We employed NMR spectroscopy and MD simulations to map the 2C7 epitope and identify the bioactive conformation of CP2. We also used small-angle X-ray scattering (SAXS) and native mass spectrometry to obtain further information about the shape and assembly state of the complex. Collectively, our new structural information suggests strategies for humanizing mAb 2C7 as a therapeutic against gonococcal infection and for optimizing peptide CP2 as a vaccine antigen.
Collapse
Affiliation(s)
- Peter T. Beernink
- Department
of Pediatrics, University of California
San Francisco, 5700 Martin Luther King Jr. Way, Oakland, California 94609, United States
| | - Cristina Di Carluccio
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
4, 80126 Naples, Italy
| | - Roberta Marchetti
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
4, 80126 Naples, Italy
| | - Linda Cerofolini
- Department
of Chemistry, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Sara Carillo
- National
Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock,
Co., Dublin A94 X099, Ireland
| | - Alessandro Cangiano
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
4, 80126 Naples, Italy
| | - Nathan Cowieson
- Diamond
Light Source, Didcot, OX11 0DE Oxfordshire, England, United Kingdom
| | - Jonathan Bones
- National
Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock,
Co., Dublin A94 X099, Ireland
- School of
Chemical and Bioprocess Engineering, University
College Dublin, Belfield Dublin 4, Ireland
| | - Antonio Molinaro
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
4, 80126 Naples, Italy
| | - Luigi Paduano
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
4, 80126 Naples, Italy
| | - Marco Fragai
- Department
of Chemistry, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Benjamin P. Beernink
- Department
of Pediatrics, University of California
San Francisco, 5700 Martin Luther King Jr. Way, Oakland, California 94609, United States
| | - Sunita Gulati
- Department
of Infectious Diseases and Immunology, University
of Massachusetts Chan Medical School, 364 Plantation St, Worcester, Massachusetts 01605, United States
| | - Jutamas Shaughnessy
- Department
of Infectious Diseases and Immunology, University
of Massachusetts Chan Medical School, 364 Plantation St, Worcester, Massachusetts 01605, United States
| | - Peter A. Rice
- Department
of Infectious Diseases and Immunology, University
of Massachusetts Chan Medical School, 364 Plantation St, Worcester, Massachusetts 01605, United States
| | - Sanjay Ram
- Department
of Infectious Diseases and Immunology, University
of Massachusetts Chan Medical School, 364 Plantation St, Worcester, Massachusetts 01605, United States
| | - Alba Silipo
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
4, 80126 Naples, Italy
| |
Collapse
|
5
|
Springer NA, Meyer SM, Taghavi A, Benhamou RI, Tong Y, Childs-Disney JL, Disney MD. Methods for the study of ribonuclease targeting chimeras (RiboTACs). Methods Enzymol 2023; 692:249-298. [PMID: 37925183 PMCID: PMC10763923 DOI: 10.1016/bs.mie.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Recently, a class of heterobifunctional small molecules called ribonuclease targeting chimeras (RiboTACs) have been developed that selectively induce degradation of RNAs in cells. These molecules function by recruiting latent ribonuclease (RNase L), an endoribonuclease involved in the innate immune response, to targeted RNA structures. The RiboTACs must activate RNase L in proximity to the RNA, resulting in cleavage of the RNA and downstream degradation. To develop and validate a new RiboTAC, several steps must be taken. First, small molecule activators that bind to RNase L must be identified. Next, since RNase L is only catalytically active upon ligand-induced homodimerization, the capability of identified small molecules to activate RNase L must be assessed. RNase L-activating small molecules should then be coupled to validated RNA-binding small molecules to construct the active RiboTAC. This RiboTAC can finally be assessed in cells for RNase L-dependent degradation of target RNAs. This chapter will provide several methods that are helpful to develop and assess RiboTACs throughout this process, including recombinant RNase L expression, methods to assess RNase L engagement in vitro such as saturation transfer difference nuclear magnetic resonance (STD NMR), an in vitro assay to assess activation of RNase L, and cellular methods to demonstrate RNase L-dependent cleavage.
Collapse
Affiliation(s)
- Noah A Springer
- The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, Scripps Way, Jupiter, FL, United States
| | - Samantha M Meyer
- The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, Scripps Way, Jupiter, FL, United States
| | - Amirhossein Taghavi
- The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, Scripps Way, Jupiter, FL, United States
| | - Raphael I Benhamou
- Institute for Drug Research, The School of Pharmacy, The Hebrew University of Jerusalem, Hadassah-Ein Kerem, Jerusalem, Israel
| | - Yuquan Tong
- The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, Scripps Way, Jupiter, FL, United States
| | - Jessica L Childs-Disney
- The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, Scripps Way, Jupiter, FL, United States
| | - Matthew D Disney
- The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, Scripps Way, Jupiter, FL, United States.
| |
Collapse
|
6
|
Vinhas S, Ivanova G, de Castro B, Rangel M. NMR and EPR study of the interaction of tris(3-hydroxy-4-pyridinonato) Ga(III) complexes with liposomes that mimic plant membranes. Biophys Chem 2023; 298:107021. [PMID: 37182237 DOI: 10.1016/j.bpc.2023.107021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/16/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023]
Abstract
We performed an NMR and EPR study of the interaction of four [Ga(3,4-HPO)3] chelates with liposomes derived from a soybean extract (SEL) and simpler formulations using POPC (100%) and POPE:POPC (50%). Parent [Fe(3,4-HPO)3] chelates are eligible to prevent Iron Deficiency Chlorosis and we took advantage of the likenesses of the ions Fe (III) and Ga (III), and the fact their metal ion complexes are isostructural, to perform a combined NMR and EPR study to get information about the permeation properties of the complexes. The results demonstrate the presence of liposomes loaded with Ga-chelates and that the distribution of complexes alongside the bilayer is dependent on their structure. Two compounds, [Ga(mpp)3] and [Ga(etpp)3], have a higher affinity for the polar region of the liposome bilayer thus suggesting that their structure facilitates their permanence at the root-rhizosphere interface. Chelates [Ga(dmpp)3] and [Ga(mrb13)3] interact with all types of protons of the lipid bilayer thus implying that they travel all along the bilayer structure indicating their higher permeation properties through soybean membranes. The results obtained for compound, [Ga(mrb13)3], which has been included in this work but was not yet tested in plant supplementation experiments, encourage its testing in in vivo plant studies once this study revealed that it interacts strongly with the model membranes. If the results of the future experiments in plants are positive and consistent with the present membrane-interaction studies the latter could constitute a good screening test for future compounds thus saving reagents and time.
Collapse
Affiliation(s)
- Sílvia Vinhas
- REQUIMTE, LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4069-007 Porto, Portugal
| | - Galya Ivanova
- REQUIMTE, LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4069-007 Porto, Portugal
| | - Baltazar de Castro
- REQUIMTE, LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4069-007 Porto, Portugal
| | - Maria Rangel
- REQUIMTE, LAQV, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
7
|
Wasilewicz A, Kirchweger B, Bojkova D, Abi Saad MJ, Langeder J, Bütikofer M, Adelsberger S, Grienke U, Cinatl
Jr. J, Petermann O, Scapozza L, Orts J, Kirchmair J, Rabenau HF, Rollinger JM. Identification of Natural Products Inhibiting SARS-CoV-2 by Targeting Viral Proteases: A Combined in Silico and in Vitro Approach. JOURNAL OF NATURAL PRODUCTS 2023; 86:264-275. [PMID: 36651644 PMCID: PMC9885530 DOI: 10.1021/acs.jnatprod.2c00843] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 05/24/2023]
Abstract
In this study, an integrated in silico-in vitro approach was employed to discover natural products (NPs) active against SARS-CoV-2. The two SARS-CoV-2 viral proteases, i.e., main protease (Mpro) and papain-like protease (PLpro), were selected as targets for the in silico study. Virtual hits were obtained by docking more than 140,000 NPs and NP derivatives available in-house and from commercial sources, and 38 virtual hits were experimentally validated in vitro using two enzyme-based assays. Five inhibited the enzyme activity of SARS-CoV-2 Mpro by more than 60% at a concentration of 20 μM, and four of them with high potency (IC50 < 10 μM). These hit compounds were further evaluated for their antiviral activity against SARS-CoV-2 in Calu-3 cells. The results from the cell-based assay revealed three mulberry Diels-Alder-type adducts (MDAAs) from Morus alba with pronounced anti-SARS-CoV-2 activities. Sanggenons C (12), O (13), and G (15) showed IC50 values of 4.6, 8.0, and 7.6 μM and selectivity index values of 5.1, 3.1 and 6.5, respectively. The docking poses of MDAAs in SARS-CoV-2 Mpro proposed a butterfly-shaped binding conformation, which was supported by the results of saturation transfer difference NMR experiments and competitive 1H relaxation dispersion NMR spectroscopy.
Collapse
Affiliation(s)
- Andreas Wasilewicz
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Vienna
Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Benjamin Kirchweger
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Denisa Bojkova
- Institute
of Medical Virology, University Hospital
Frankfurt, Paul-Ehrlich-Straße
40, 60596 Frankfurt
am Main, Germany
| | - Marie Jose Abi Saad
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Vienna
Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Julia Langeder
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Vienna
Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Matthias Bütikofer
- Swiss
Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Sigrid Adelsberger
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Vienna
Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Ulrike Grienke
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Jindrich Cinatl
Jr.
- Institute
of Medical Virology, University Hospital
Frankfurt, Paul-Ehrlich-Straße
40, 60596 Frankfurt
am Main, Germany
| | - Olivier Petermann
- Pharmaceutical
Biochemistry Group, School of Pharmaceutical Sciences, University of Geneva, 1205 Geneva, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1205 Geneva, Switzerland
| | - Leonardo Scapozza
- Pharmaceutical
Biochemistry Group, School of Pharmaceutical Sciences, University of Geneva, 1205 Geneva, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1205 Geneva, Switzerland
| | - Julien Orts
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Johannes Kirchmair
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Holger F. Rabenau
- Institute
of Medical Virology, University Hospital
Frankfurt, Paul-Ehrlich-Straße
40, 60596 Frankfurt
am Main, Germany
| | - Judith M. Rollinger
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
8
|
Methods for the solubilisation of membrane proteins: the micelle-aneous world of membrane protein solubilisation. Biochem Soc Trans 2021; 49:1763-1777. [PMID: 34415288 PMCID: PMC8421053 DOI: 10.1042/bst20210181] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
The solubilisation of membrane proteins (MPs) necessitates the overlap of two contradictory events; the extraction of MPs from their native lipid membranes and their subsequent stabilisation in aqueous environments. Whilst the current myriad of membrane mimetic systems provide a range of modus operandi, there are no golden rules for selecting the optimal pipeline for solubilisation of a specific MP hence a miscellaneous approach must be employed balancing both solubilisation efficiency and protein stability. In recent years, numerous diverse lipid membrane mimetic systems have been developed, expanding the pool of available solubilisation strategies. This review provides an overview of recent developments in the membrane mimetic field, with particular emphasis placed upon detergents, polymer-based nanodiscs and amphipols, highlighting the latest reagents to enter the toolbox of MP research.
Collapse
|
9
|
Palmioli A, Sperandeo P, Bertuzzi S, Polissi A, Airoldi C. On-cell saturation transfer difference NMR for the identification of FimH ligands and inhibitors. Bioorg Chem 2021; 112:104876. [PMID: 33845337 DOI: 10.1016/j.bioorg.2021.104876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/14/2021] [Accepted: 03/25/2021] [Indexed: 12/23/2022]
Abstract
We describe the development of an on-cell NMR method for the rapid screening of FimH ligands and the structural identification of ligand binding epitopes. FimH is a mannose-binding bacterial adhesin expressed at the apical end of type 1 pili of uropathogenic bacterial strains and responsible for their d-mannose sensitive adhesion to host mammalian epithelial cells. Because of these properties, FimH is a key virulence factor and an attractive therapeutic target for urinary tract infection. We prepared synthetic d-mannose decorated dendrimers, we tested their ability to prevent the FimH-mediated yeast agglutination, and thus we used the compounds showing the best inhibitory activity as models of FimH multivalent ligands to set up our NMR methodology. Our experimental protocol, based on on-cell STD NMR techniques, is a suitable tool for the screening and the epitope mapping of FimH ligands aimed at the development of new antiadhesive and diagnostic tools against urinary tract infection pathogens. Notably, the study is carried out in a physiological environment, i.e. at the surface of living pathogen cells expressing FimH.
Collapse
Affiliation(s)
- Alessandro Palmioli
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy.
| | - Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti, 9/11/13, 20133 Milano, Italy
| | - Sara Bertuzzi
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy; Chemical Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC-bioGUNE), 48160 Derio, Spain
| | - Alessandra Polissi
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti, 9/11/13, 20133 Milano, Italy
| | - Cristina Airoldi
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy.
| |
Collapse
|
10
|
Arkhipova V, Fu H, Hoorens MWH, Trinco G, Lameijer LN, Marin E, Feringa BL, Poelarends GJ, Szymanski W, Slotboom DJ, Guskov A. Structural Aspects of Photopharmacology: Insight into the Binding of Photoswitchable and Photocaged Inhibitors to the Glutamate Transporter Homologue. J Am Chem Soc 2021; 143:1513-1520. [PMID: 33449695 PMCID: PMC7844824 DOI: 10.1021/jacs.0c11336] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Photopharmacology addresses the challenge of drug selectivity and
side effects through creation of photoresponsive molecules activated
with light with high spatiotemporal precision. This is achieved through
incorporation of molecular photoswitches and photocages into the pharmacophore.
However, the structural basis for the light-induced modulation of
inhibitory potency in general is still missing, which poses a major
design challenge for this emerging field of research. Here we solved
crystal structures of the glutamate transporter homologue GltTk in complex with photoresponsive transport inhibitors—azobenzene
derivative of TBOA (both in trans and cis configuration) and with the photocaged compound ONB-hydroxyaspartate.
The essential role of glutamate transporters in the functioning of
the central nervous system renders them potential therapeutic targets
in the treatment of neurodegenerative diseases. The obtained structures
provide a clear structural insight into the origins of photocontrol
in photopharmacology and lay the foundation for application of photocontrolled
ligands to study the transporter dynamics by using time-resolved X-ray
crystallography.
Collapse
Affiliation(s)
- Valentina Arkhipova
- University Medical Center Groningen, Department of Radiology, Medical Imaging Center, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.,Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Haigen Fu
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Mark W H Hoorens
- University Medical Center Groningen, Department of Radiology, Medical Imaging Center, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.,Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Gianluca Trinco
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Lucien N Lameijer
- University Medical Center Groningen, Department of Radiology, Medical Imaging Center, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.,Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Egor Marin
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Ben L Feringa
- Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wiktor Szymanski
- University Medical Center Groningen, Department of Radiology, Medical Imaging Center, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.,Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Dirk J Slotboom
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Albert Guskov
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| |
Collapse
|