1
|
Yang G, Su F, Han BX, Su HX, Guo CH, Yu SH, Guan QL, Hou XM. HNF1A induces glioblastoma by upregulating EPS8 and activating PI3K/AKT signaling pathway. Biochem Pharmacol 2024; 223:116133. [PMID: 38494066 DOI: 10.1016/j.bcp.2024.116133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/04/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Despite the exact biological role of HNF1 homolog A (HNF1A) in the regulatory mechanism of glioblastoma (GBM), the molecular mechanism, especially the downstream regulation as a transcription factor, remains to be further elucidated. Immunohistochemistry was used to detect the expression and clinical relevance of HNF1A in GBM patients. CCK8, TUNEL, and subcutaneous tumor formation in nude mice were used to evaluate the effect of HNF1A on GBM in vitro and in vivo. The correction between HNF1A and epidermal growth factor receptor pathway substrate 8 (EPS8) was illustrated by bioinformatics analysis and luciferase assay. Further mechanism was explored that the transcription factor HNF1A regulated the expression of EPS8 and downstream signaling pathways by directly binding to the promoter region of EPS8. Our comprehensive analysis of clinical samples in this study showed that upregulated expression of HNF1A was associated with poor survival in GBM patients. Further, we found that knockdown of HNF1A markedly suppressed the malignant phenotype of GBM cells in vivo and in vitro as well as promoted apoptosis of tumor cells, which was reversed by upregulation of HNF1A. Mechanistically, HNF1A could significantly activate PI3K/AKT signaling pathway by specifically binding to the promoter regions of EPS8. Moreover, overexpression of EPS8 was able to reverse the apoptosis of tumor cells caused by HNF1A knockdown, thereby exacerbating the GBM progression. Correctively, our study has clarified the explicit mechanism by which HNF1A promotes GBM malignancy and provides a new therapeutic target for further clinical application.
Collapse
Affiliation(s)
- Gang Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, PR China; Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Fei Su
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, PR China; Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Bin-Xiao Han
- Gansu Institute of Medical Information, Institute of Gansu Medical Science Research, Lanzhou, Gansu 730000, PR China
| | - Hong-Xin Su
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Chen-Hao Guo
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, PR China; Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Shao-Hua Yu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, PR China; Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Quan-Lin Guan
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, PR China; Department of Oncology Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, PR China.
| | - Xiao-Ming Hou
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
2
|
Jin J, Nguyen LTG, Wassef A, Sadek R, Schmitt TM, Guo GL, Rasmussen TP, Zhong XB. Identification and Functional Characterization of Alternative Transcripts of LncRNA HNF1A-AS1 and Their Impacts on Cell Growth, Differentiation, Liver Diseases, and in Response to Drug Induction. Noncoding RNA 2024; 10:28. [PMID: 38668386 PMCID: PMC11053763 DOI: 10.3390/ncrna10020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024] Open
Abstract
The long non-coding RNA (lncRNA) hepatocyte nuclear factor-1 alpha (HNF1A) antisense RNA 1 (HNF1A-AS1) is an important lncRNA for liver growth, development, cell differentiation, and drug metabolism. Like many lncRNAs, HNF1A-AS1 has multiple annotated alternative transcripts in the human genome. Several fundamental biological questions are still not solved: (1) How many transcripts really exist in biological samples, such as liver samples and liver cell lines? (2) What are the expression patterns of different alternative HNF1A-AS1 transcripts at different conditions, including during cell growth and development, after exposure to xenobiotics (such as drugs), and in disease conditions, such as metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-associated liver disease (ALD) cirrhosis, and obesity? (3) Does the siRNA used in previous studies knock down one or multiple transcripts? (4) Do different transcripts have the same or different functions for gene regulation? The presented data confirm the existence of several annotated HNF1A-AS1 transcripts in liver samples and cell lines, but also identify some new transcripts, which are not annotated in the Ensembl genome database. Expression patterns of the identified HNF1A-AS1 transcripts are highly correlated with the cell differentiation of matured hepatocyte-like cells from human embryonic stem cells (hESC), growth and differentiation of HepaRG cells, in response to rifampicin induction, and in various liver disease conditions. The expression levels of the HNF1A-AS1 transcripts are also highly correlated to the expression of cytochrome P450 enzymes, such as CYP3A4, during HepaRG growth, differentiation, and in response to rifampicin induction.
Collapse
Affiliation(s)
- Jing Jin
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; (J.J.); (L.T.G.N.); (T.P.R.)
| | - Le Tra Giang Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; (J.J.); (L.T.G.N.); (T.P.R.)
| | - Andrew Wassef
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08901, USA;
- Center of Excellence for Pharmaceutical Translational Research and Education, Rutgers University, Piscataway, NJ 08901, USA
- Center of Excellence for Metabolic and Bariatric Surgery, Robert Wood Johnson Barnabas University Hospital, New Brunswick, NJ 08901, USA;
| | - Ragui Sadek
- Center of Excellence for Metabolic and Bariatric Surgery, Robert Wood Johnson Barnabas University Hospital, New Brunswick, NJ 08901, USA;
| | - Timothy M. Schmitt
- Department of General Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, Ernst Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08901, USA;
| | - Theodore P. Rasmussen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; (J.J.); (L.T.G.N.); (T.P.R.)
| | - Xiao-bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; (J.J.); (L.T.G.N.); (T.P.R.)
| |
Collapse
|
3
|
Duan HP, Yan JH, Nie L, Wang Y, Xie H. A noval prognostic signature of the N7-methylguanosine (m7G)-related miRNA in lung adenocarcinoma. BMC Pulm Med 2023; 23:14. [PMID: 36635678 PMCID: PMC9838007 DOI: 10.1186/s12890-022-02290-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/16/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is characterized by high morbidity and mortality rates and poor prognosis. N7-methylguanosine play an increasingly vital role in lung adenocarcinoma. However, the prognostic value of N7-methylguanosine related-miRNAs in lung adenocarcinoma remains unclear. METHODS In the study, the mRNA and miRNA expression profiles and corresponding clinical informations were downloaded from the public database. The prognostic signature was built using least absolute shrinkage and selection operator Cox analysis. The Kaplan-Meier method was used to compare survival outcomes between the high- and low-risk groups. Signatures for the development of lung adenocarcinoma were tested using univariate and multivariate Cox regression models. Single-sample gene set enrichment analysis was used to determine the immune cell infiltration score. First, we predicted METTL1 and WDR4 chemosensitivities based on a public pharmacogenomics database. The area under the receiver operating characteristic curve showed that the performance of signature in 1-,3-, and 5-year survival predictions were 0.68, 0.65, and 0.683, respectively. RESULTS We established a novel prognostic signature consisting of 9 N7-Methylguanosine related miRNAs using least absolute shrinkage and selection operator Cox analysis. Patients in the high-risk group had shorter survival times than those in the low-risk group did. The calibration curves at 1, 3, and 5-year also illustrate the high predictive power of the structure. Signature was corrected using the Toumor stage. The expression levels of METTL1 and WDR4 significantly correlated with the sensitivity of cancer cells to antitumor drugs. CONCLUSIONS A novel signature constructed using 9 N7-methylguanosine related-miRNAs can be used for prognostic prediction.
Collapse
Affiliation(s)
- Han-ping Duan
- grid.449838.a0000 0004 1757 4123Department of Nuclear Medicine, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000 Hunan Province People’s Republic of China
| | - Jian-hui Yan
- grid.449838.a0000 0004 1757 4123Department of General Medicine, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000 Hunan Province People’s Republic of China
| | - Lin Nie
- grid.449838.a0000 0004 1757 4123Department of Radiology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000 Hunan Province People’s Republic of China
| | - Ye Wang
- grid.449838.a0000 0004 1757 4123Department of Thoracic Surgery, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000 Hunan Province People’s Republic of China
| | - Hui Xie
- grid.449838.a0000 0004 1757 4123Department of Radiation Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, No. 25, Renmin West Road, Chenzhou, 423000 Hunan Province People’s Republic of China ,Key Laboratory of Medical Imaging and Artifical Intelligence of Hunan Province, 423000 Chenzhou, People’s Republic of China
| |
Collapse
|
4
|
Arip M, Tan LF, Jayaraj R, Abdullah M, Rajagopal M, Selvaraja M. Exploration of biomarkers for the diagnosis, treatment and prognosis of cervical cancer: a review. Discov Oncol 2022; 13:91. [PMID: 36152065 PMCID: PMC9509511 DOI: 10.1007/s12672-022-00551-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/16/2022] [Indexed: 12/19/2022] Open
Abstract
As the fourth most diagnosed cancer, cervical cancer (CC) is one of the major causes of cancer-related mortality affecting females globally, particularly when diagnosed at advanced stage. Discoveries of CC biomarkers pave the road to precision medicine for better patient outcomes. High throughput omics technologies, characterized by big data production further accelerate the process. To date, various CC biomarkers have been discovered through the advancement in technologies. Despite, very few have successfully translated into clinical practice due to the paucity of validation through large scale clinical studies. While vast amounts of data are generated by the omics technologies, challenges arise in identifying the clinically relevant data for translational research as analyses of single-level omics approaches rarely provide causal relations. Integrative multi-omics approaches across different levels of cellular function enable better comprehension of the fundamental biology of CC by highlighting the interrelationships of the involved biomolecules and their function, aiding in identification of novel integrated biomarker profile for precision medicine. Establishment of a worldwide Early Detection Research Network (EDRN) system helps accelerating the pace of biomarker translation. To fill the research gap, we review the recent research progress on CC biomarker development from the application of high throughput omics technologies with sections covering genomics, transcriptomics, proteomics, and metabolomics.
Collapse
Affiliation(s)
- Masita Arip
- Allergy & Immunology Research Centre, Institute for Medical Research, National Institute of Health, Setia Alam, 40170 Shah Alam, Selangor, Malaysia
| | - Lee Fang Tan
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Rama Jayaraj
- Charles Darwin University, Darwin, NT, 0909, Australia
| | - Maha Abdullah
- Immunology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Jalan Serdang, 43400, Serdang, Selangor, Malaysia
| | - Mogana Rajagopal
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Malarvili Selvaraja
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
5
|
Candidate Genes in Testing Strategies for Linkage Analysis and Bioinformatic Sorting of Whole Genome Sequencing Data in Three Small Japanese Families with Idiopathic Superior Oblique Muscle Palsy. Int J Mol Sci 2022; 23:ijms23158626. [PMID: 35955756 PMCID: PMC9369257 DOI: 10.3390/ijms23158626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/24/2022] [Accepted: 07/31/2022] [Indexed: 02/01/2023] Open
Abstract
Idiopathic superior oblique muscle palsy is a major type of paralytic, non-comitant strabismus and presents vertical and cyclo-torsional deviation of one eye against the other eye, with a large vertical fusion range and abnormal head posture such as head tilt. Genetic background is considered to play a role in its development, as patients with idiopathic superior oblique muscle palsy have varying degrees of muscle hypoplasia and, rarely, the complete absence of the muscle, that is, aplasia. In this study, whole genome sequencing was performed, and single nucleotide variations and short insertions/deletions (SNVs/InDels) were annotated in two patients each in three small families (six patients in total) with idiopathic superior oblique muscle palsy, in addition to three normal individuals in one family. At first, linkage analysis was carried out in the three families and SNVs/InDels in chromosomal loci with negative LOD scores were excluded. Next, SNVs/InDels shared by the six patients, but not by the three normal individuals, were chosen. SNVs/InDels were further narrowed down by choosing low-frequency (<1%) or non-registered SNVs/InDels in four databases for the Japanese population, and then by choosing SNVs/InDels with functional influence, leading to one candidate gene, SSTR5-AS1 in chromosome 16. The six patients were heterozygous for 13-nucleotide deletion in SSTR5-AS1, except for one homozygous patient, while the three normal individuals were wild type. Targeted polymerase chain reaction (PCR) and direct sequencing of PCR products confirmed the 13-nucleotide deletion in SSTR5-AS1. In the face of newly-registered SSTR5-AS1 13-nucleotide deletion at a higher frequency in a latest released database for the Japanese population, the skipping of low-frequency and non-registration sorting still resulted in only 13 candidate genes including SSTR5-AS1 as common variants. The skipping of linkage analysis also led to the same set of 13 candidate genes. Different testing strategies that consisted of linkage analysis and simple unintentional bioinformatics could reach candidate genes in three small families with idiopathic superior oblique muscle palsy.
Collapse
|
6
|
Zhang Y, Shi J, Luo J, Liu C, Zhu L. Regulatory mechanisms and potential medical applications of HNF1A-AS1 in cancers. Am J Transl Res 2022; 14:4154-4168. [PMID: 35836869 PMCID: PMC9274608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Long noncoding RNAs (lncRNAs) are defined as a class of non-protein-coding RNAs that are longer than 200 nucleotides. Previous studies have shown that lncRNAs play a vital role in the progression of multiple diseases, which highlights their potential for medical applications. The lncRNA hepatocyte nuclear factor 1 homeobox A (HNF1A) antisense RNA 1 (HNF1A-AS1) is known to be abnormally expressed in multiple cancers. HNF1A-AS1 exerts its oncogenic roles through a variety of molecular mechanisms. Moreover, aberrant HNF1A-AS1 expression is associated with diverse clinical features in cancer patients. Therefore, HNF1A-AS1 is a promising biomarker for tumor diagnosis and prognosis and thus a potential candidate for tumor therapy. This review summarizes current studies on the role and the underlying mechanisms of HNF1A-AS1 various cancer types, including gastric cancer, liver cancer, glioma, lung cancer, colorectal cancer, breast cancer, bladder cancer, osteosarcoma, esophageal adenocarcinoma, hemangioma, oral squamous cell carcinoma, laryngeal squamous cell carcinoma, cervical cancer, as well as gastroenteropancreatic neuroendocrine neoplasms. We also describe the diagnostic, prognostic, and therapeutic value of HNF1A-AS1 for multiple cancer patients.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Jiang Shi
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Junfang Luo
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Cong Liu
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Lixu Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| |
Collapse
|
7
|
Liu Y, Zhao F, Tan F, Tang L, Du Z, Mou J, Zhou G, Yuan C. HNF1A-AS1:A tumor-associated long non-coding RNA. Curr Pharm Des 2022; 28:1720-1729. [PMID: 35619319 DOI: 10.2174/1381612828666220520113846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/31/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hepatocyte nuclear factor 1 homeobox A antisense RNA 1 (HNF1A-AS1) is a Long non-coding RNA(LncRNA)that participates in the occurrence development of lots of tumors and is supposed to be a new biomarker. The text aims to illustrate the biological effect, specific mechanism and clinical significance of HNF1A-AS1 in various tumors. METHODS Via consulting the literature, analyze and summarize the relationship between HNF1A-AS1 and all kinds of tumors and the specific mechanism. RESULTS This is a review paper about the tumor-associated long non-coding RNA HNF1A-AS1. Many Researches show that LncRNA HNF1A-AS1 is related to the development of tumorous tumors. Its expression is up-regulated in numerous tumors, such as oral squamous cell carcinoma, hepatocellular carcinoma, breast cancer, osteosarcoma, lung cancer, cervical cancer, bladder cancer, colon cancer, colorectal cancer, oesophageal adenocarcinoma and laryngeal squamous cell carcinoma. However, HNF1A-AS1 is down-regulated in gastroenteropancreatic, neuroendocrine neoplasms, oral squamous cell carcinoma. Furthermore, HNF1A-AS1 can affect tumor proliferation, invasion, migration and apoptosis by targeting some microRNAs-miR-661 and miR-124. Or HNF1A-AS1 can also influence the development of tumors by regulating EMT. CONCLUSION These studies show that LncRNA-HNF1A-AS1 is closely related to the occurrence development of numerous cancers. Through various molecular mechanisms to regulate tumor growth, HNF1A-AS1 can possibly become the new biological biomarker and therapeutic target for many kinds of tumors.
Collapse
Affiliation(s)
- Yuling Liu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College, China Three Gorges University, Yichang 443002, China
| | - Fangnan Zhao
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College, China Three Gorges University, Yichang 443002, China
| | - Fangshun Tan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College, China Three Gorges University, Yichang 443002, China
| | - Lu Tang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College, China Three Gorges University, Yichang 443002, China
| | - Zhuoying Du
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College, China Three Gorges University, Yichang 443002, China
| | - Jie Mou
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College, China Three Gorges University, Yichang 443002, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China.,Hubei Clinical Research Center for Functional Digestive Diseases of Traditional Chinese Medicine, Yichang Hospital of Traditional Chinese Medicine, Yichang, 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College, China Three Gorges University, Yichang 443002, China.,Hubei Clinical Research Center for Functional Digestive Diseases of Traditional Chinese Medicine, Yichang Hospital of Traditional Chinese Medicine, Yichang, 443002, China
| |
Collapse
|
8
|
Zhang W, Liu Y, Wu J, Wang W, Zhou J, Guo J, Wang Q, Zhang X, Xie J, Xing Y, Hu D. Surgical Treatment is Still Recommended for Patients Over 75 Years with IA NSCLC: A Predictive Model Based on Surveillance, Epidemiology and End Results Database. Cancer Control 2022; 29:10732748221142750. [DOI: 10.1177/10732748221142750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background To determine the populations who suitable for surgical treatment in elderly patients (age ≥ 75 y) with IA stage. Methods The clinical data of NSCLC patients diagnosed from 2010 to 2015 were collected from the SEER database and divided into surgery group (SG) and no-surgery groups (NSG). The confounders were balanced and differences in survival were compared between groups using PSM (Propensity score matching, PSM). Cox regression analysis was used to screen the independent factors that affect the Cancer-specific survival (CSS). The surgery group was defined as the patients who surgery-benefit and surgery-no benefit according to the median CSS of the no-surgery group, and then randomly divided into training and validation groups. A surgical benefit prediction model was constructed in the training and validation group. Finally, the model is evaluated using a variety of methods. Results A total of 7297 patients were included. Before PSM (SG: n = 3630; NSG: n = 3665) and after PSM (SG: n = 1725, NSG: n = 1725) confirmed that the CSS of the surgery group was longer than the no-surgery group (before PSM: 82 vs. 31 months, P < .0001; after PSM: 55 vs. 39 months, P < .0001). Independent prognostic factors included age, gender, race, marrital, tumor grade, histology, and surgery. In the surgery cohort after PSM, 1005 patients (58.27%) who survived for more than 39 months were defined as surgery beneficiaries, and the 720 patients (41.73%) were defined surgery-no beneficiaries. The surgery group was divided into training group 1207 (70%) and validation group 518 (30%). Independent prognostic factors were used to construct a prediction model. In training group (AUC = .678) and validation group (AUC = .622). Calibration curve and decision curve prove that the model has better performance. Conclusions This predictive model can well identify elderly patients with stage IA NSCLC who would benefit from surgery, thus providing a basis for clinical treatment decisions.
Collapse
Affiliation(s)
- Wenting Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan, P.R. China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Huainan, P.R. China
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Huainan, P.R. China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, P.R. China
| | - Wenyang Wang
- School of Medicine, Anhui University of Science and Technology, Huainan, P.R. China
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, P.R. China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Huainan, P.R. China
| | - Qingsen Wang
- School of Medicine, Anhui University of Science and Technology, Huainan, P.R. China
| | - Xin Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan, P.R. China
| | - Jun Xie
- Cancer Hospital of Anhui University of Science and Technology, Huainan, P.R. China
| | - Yingru Xing
- School of Medicine, Anhui University of Science and Technology, Huainan, P.R. China
- Cancer Hospital of Anhui University of Science and Technology, Huainan, P.R. China
- Department of Clinical Laboratory, Anhui Zhongke Gengjiu Hospital, Hefei, P.R. China
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Huainan, P.R. China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, P.R. China
- Department of Clinical Laboratory, Anhui Zhongke Gengjiu Hospital, Hefei, P.R. China
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, P.R. China
| |
Collapse
|
9
|
Ramos EI, Yang B, Vasquez YM, Lin KY, Choudhari R, Gadad SS. Characterization of the Testis-specific LINC01016 Gene Reveals Isoform-specific Roles in Controlling Biological Processes. J Endocr Soc 2021; 5:bvab153. [PMID: 34703959 PMCID: PMC8533999 DOI: 10.1210/jendso/bvab153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 01/22/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as critical regulators of biological processes. However, the aberrant expression of an isoform from the same lncRNA gene could lead to RNA with altered functions due to changes in their conformations, leading to diseases. Here, we describe a detailed characterization of the gene that encodes long intergenic non-protein-coding RNA 01016 (LINC01016, also known as LncRNA1195) with a focus on its structure, exon usage, and expression in human and macaque tissues. In this study we show that it is among the highly expressed lncRNAs in the testis, exclusively conserved among nonhuman primates, suggesting its recent evolution and is processed into 12 distinct RNAs in testis, cervix, and uterus tissues. Further, we integrate de novo annotation of expressed LINC01016 transcripts and isoform-dependent gene expression analyses to show that human LINC01016 is a multiexon gene, processed through differential exon usage with isoform-specific roles. Furthermore, in cervical, testicular, and uterine cancers, LINC01016 isoforms are differentially expressed, and their expression is predictive of survival in these cancers. This study has revealed an essential aspect of lncRNA biology, rarely associated with coding RNAs, that lncRNA genes are precisely processed to generate isoforms with distinct biological roles in specific tissues.
Collapse
Affiliation(s)
- Enrique I Ramos
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905, USA
| | - Barbara Yang
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905, USA
| | - Yasmin M Vasquez
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ken Y Lin
- Department of Obstetrics & Gynecology and Women's Health, Division of Gynecologic Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Ramesh Choudhari
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905, USA
| | - Shrikanth S Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905, USA.,Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, Texas 79905, USA.,Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, Texas 78229, USA
| |
Collapse
|
10
|
Rooda I, Kaselt B, Liivrand M, Smolander OP, Salumets A, Velthut-Meikas A. Hsa-mir-548 family expression in human reproductive tissues. BMC Genom Data 2021; 22:40. [PMID: 34625017 PMCID: PMC8501715 DOI: 10.1186/s12863-021-00997-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hsa-miR-548ba expressed in ovarian granulosa cells targets PTEN and LIFR, which are essential for ovarian follicle activation and growth. The expression pattern of hsa-miR-548ba correlates with its host gene follicle-stimulating hormone receptor (FSHR), and FSH has a positive influence on hsa-miR-548ba expression. However, hsa-miR-548ba is a member of a large hsa-mir-548 family with potentially overlapping targets. The current study aims to investigate the co-expression of hsa-mir-548 family members in FSHR-positive reproductive tissues and to explore the potential co-regulation of pathways. RESULTS For the above-described analysis, small RNA sequencing data from public data repositories were used. Sequencing results revealed that hsa-miR-548ba was expressed at the highest level in the ovarian granulosa cells and uterine myometrial samples together with another twelve and one hsa-miR-548 family members, respectively. Pathway enrichment analysis of microRNA targets in the ovarian samples revealed the hsa-miR-548ba and hsa-miR-548b-5p co-regulation of RAB geranylgeranylation in mural granulosa cells. Moreover, other hsa-mir-548 family members co-regulate pathways essential for ovarian functions (PIP3 activates AKT signalling and signalling by ERBB4). In addition to hsa-miR-548ba, hsa-miR-548o-3p is expressed in the myometrium, which separately targets the peroxisome proliferator-activated receptor alpha (PPARA) pathway. CONCLUSION This study reveals that hsa-mir-548 family members are expressed in variable combinations in the reproductive tract, where they potentially fulfil different regulatory roles. The results provide a reference for further studies of the hsa-mir-548 family role in the reproductive tract.
Collapse
Affiliation(s)
- Ilmatar Rooda
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
- Competence Centre on Health Technologies, Teaduspargi 13, 50411, Tartu, Estonia.
| | - Birgitta Kaselt
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Maria Liivrand
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Olli-Pekka Smolander
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Teaduspargi 13, 50411, Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 14186, Stockholm, Sweden
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, L. Puusepa St. 8, 50406, Tartu, Estonia
- Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Agne Velthut-Meikas
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| |
Collapse
|
11
|
Xu J, Lu W. CircSPIDR acts as a tumour suppressor in cervical adenocarcinoma by sponging miR-431-5p and regulating SORCS1 and CUBN expression. Aging (Albany NY) 2021; 13:18340-18359. [PMID: 34326275 PMCID: PMC8351706 DOI: 10.18632/aging.203283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/19/2021] [Indexed: 01/22/2023]
Abstract
To identify circular RNAs (circRNAs) with tumor suppressor activity against cervical adenocarcinoma, we compared the circRNA levels of cervical adenocarcinoma and normal cervical tissues. We found that circSPIDR was dramatically downregulated in cervical adenocarcinoma tissues. In cervical adenocarcinoma cells, overexpression of circSPIDR reduced cell viability, inhibited colony formation and promoted apoptosis, whereas knockdown of circSPIDR exerted the opposite effects. CircSPIDR overexpression also suppressed the tumorigenicity of cervical adenocarcinoma cells in a xenograft mouse model. CircSPIDR was found to sponge miR-431-5p, thereby de-repressing sortin-related VPS10 domain-containing receptor 1 (SORCS1) and cubilin (CUBN) and inhibiting the development of cervical adenocarcinoma. In clinical cervical samples, circSPIDR expression correlated negatively with miR-431-5p expression and positively with SORCS1 and CUBN expression. These results demonstrated that circSPIDR suppresses cervical adenocarcinoma by competitively binding to miR-431-5p, thus upregulating SORCS1 and CUBN. These findings suggest circSPIDR could serve as a novel therapeutic target for treatment of cervical adenocarcinoma patients.
Collapse
Affiliation(s)
- Junfen Xu
- Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
- Center of Uterine Cancer Diagnosis & Therapy of Zhejiang Province, Hangzhou 310006, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou 310006, Zhejiang, China
| |
Collapse
|
12
|
Oshiumi H. Circulating Extracellular Vesicles Carry Immune Regulatory miRNAs and Regulate Vaccine Efficacy and Local Inflammatory Response After Vaccination. Front Immunol 2021; 12:685344. [PMID: 34211472 PMCID: PMC8239358 DOI: 10.3389/fimmu.2021.685344] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/31/2021] [Indexed: 01/24/2023] Open
Abstract
Vaccination is the best prophylaxis for the prevention of infectious diseases, including coronavirus disease 2019. However, the efficacy of vaccines and onset of adverse reactions vary among individuals. Circulating extracellular vesicles (EVs) regulate the immune responses after vaccination by delivering microRNAs (miRNAs) to myeloid and lymphoid cells. Among these, miR-192 levels in serum EVs increase with aging, in an IL-6-dependent manner, reducing excessive IL-6 expression in aged mice, creating a negative feedback loop. Excessive IL-6 expression reduces vaccination efficacy in aged mice, while EV miR-192 improves efficacy in these aged mice as well, making this miRNA an interesting focus of study. miR-21 levels in serum EVs also increase with aging, and regulates the expression of IL-12 required for Th1 responses; therefore, EV miR-21 is expected to regulate vaccine efficacy. miR-451a, another important miRNA, is abundant in serum EVs and controls the expression of cytokines, such as type I interferon and IL-6. However, levels differ among individuals and correlate with local inflammatory symptoms experienced after a seasonal flu vaccination. These findings suggest the importance of EV miRNAs as a tool to improve vaccine efficacy and also as biomarkers to predict the immune response and adverse reactions after vaccinations.
Collapse
Affiliation(s)
- Hiroyuki Oshiumi
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
13
|
Dong RF, Zhuang YJ, Wang Y, Zhang ZY, Xu XZ, Mao YR, Yu JJ. Tumor suppressor miR-192-5p targets TRPM7 and inhibits proliferation and invasion in cervical cancer. Kaohsiung J Med Sci 2021; 37:699-708. [PMID: 34042256 DOI: 10.1002/kjm2.12398] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 12/19/2022] Open
Abstract
Cervical cancer is the fourth highest mortality cancer among women worldwide. Many researchers have discovered the major anticancer role of miR-192-5p. However, no study has revealed the effect of miR-192-5p on cervical cancer and its molecular mechanism. Therefore, in this study, we aimed to explore the role of miR-192-5p in proliferation, invasion of cervical cancer, and its regulatory mechanism. Firstly, the expression level of miR-192-5p was examined by real-time quantitative polymerase chain reaction. Cell counting kit-8 analysis was applied to detect the proliferation of transfected Caski and SiHa cells. Flow cytometry assay was applied to detect the apoptosis of transfected Caski and SiHa cells. Our result showed that miR-192-5p restrained cervical cancer cell proliferation and induced apoptosis. Then we employed wound healing and transwell assays to analyze the migration and invasion abilities of Caski and SiHa cells in vitro. The results showed that miR-192-5p had an inhibitory effect on cervical cancer migration and invasion. The results of in vivo experiment demonstrated that miR-192-5p also inhibited tumor development in nude mice. We further detected that the binding of transient receptor potential melastatin-subfamily member 7 (TRPM7) to miR-192-5p using bioinformatic methods and dual-luciferase reporter assay. Finally, we found that TRPM7 overexpression reversed the inhibitory effects of miR-192-5p on proliferation, migration, and invasion on cervical cancer cells. In conclusion, the findings of the present study revealed that miR-192-5p performs an inhibitory role in cervical cancer proliferation and invasion by targeting TRPM7.
Collapse
Affiliation(s)
- Ruo-Fan Dong
- Department of Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yong-Ju Zhuang
- Department of Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yuan Wang
- Department of Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Zhen-Yu Zhang
- Department of Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xi-Zhong Xu
- Department of Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yu-Rong Mao
- Department of Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jin-Jin Yu
- Department of Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|