1
|
Amendola C, Buttafava M, Carteano T, Contini L, Cortese L, Durduran T, Frabasile L, Guadagno CN, Karadeinz U, Lacerenza M, Mesquida J, Parsa S, Re R, Sanoja Garcia D, Konugolu Venkata Sekar S, Spinelli L, Torricelli A, Tosi A, Weigel UM, Yaqub MA, Zanoletti M, Contini D. Assessment of power spectral density of microvascular hemodynamics in skeletal muscles at very low and low-frequency via near-infrared diffuse optical spectroscopies. BIOMEDICAL OPTICS EXPRESS 2023; 14:5994-6015. [PMID: 38021143 PMCID: PMC10659778 DOI: 10.1364/boe.502618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
In this work, we used a hybrid time domain near-infrared spectroscopy (TD-NIRS) and diffuse correlation spectroscopy (DCS) device to retrieve hemoglobin and blood flow oscillations of skeletal muscle microvasculature. We focused on very low (VLF) and low-frequency (LF) oscillations (i.e., frequency lower than 0.145 Hz), that are related to myogenic, neurogenic and endothelial activities. We measured power spectral density (PSD) of blood flow and hemoglobin concentration in four muscles (thenar eminence, plantar fascia, sternocleidomastoid and forearm) of 14 healthy volunteers to highlight possible differences in microvascular hemodynamic oscillations. We observed larger PSDs for blood flow compared to hemoglobin concentration, in particular in case of distal muscles (i.e., thenar eminence and plantar fascia). Finally, we compared the PSDs measured on the thenar eminence of healthy subjects with the ones measured on a septic patient in the intensive care unit: lower power in the endothelial-dependent frequency band, and larger power in the myogenic ones were observed in the septic patient, in accordance with previous works based on laser doppler flowmetry.
Collapse
Affiliation(s)
| | | | | | | | - Lorenzo Cortese
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Turgut Durduran
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | | - Claudia Nunzia Guadagno
- BioPixS Ltd – Biophotonics Standards, IPIC, Tyndall National Institute, Lee Maltings Complex, Cork, Ireland
| | - Umut Karadeinz
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | | | - Jaume Mesquida
- Critical Care Department, Parc Taulí Hospital Universitari. Institut D’Investigació i Innovació Parc Taulí I3PT, Sabadell, Spain
| | | | - Rebecca Re
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
| | | | | | - Lorenzo Spinelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Alessandro Torricelli
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Alberto Tosi
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milan, Italy
| | - Udo M. Weigel
- HemoPhotonics S.L., Castelldefels, (Barcelona), Spain
| | - M. Atif Yaqub
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Marta Zanoletti
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Davide Contini
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
| |
Collapse
|
2
|
Langri DS, Sunar U. Non-Invasive Continuous Optical Monitoring of Cerebral Blood Flow after Traumatic Brain Injury in Mice Using Fiber Camera-Based Speckle Contrast Optical Spectroscopy. Brain Sci 2023; 13:1365. [PMID: 37891734 PMCID: PMC10605647 DOI: 10.3390/brainsci13101365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 10/29/2023] Open
Abstract
Neurocritical care focuses on monitoring cerebral blood flow (CBF) to prevent secondary brain injuries before damage becomes irreversible. Thus, there is a critical unmet need for continuous neuromonitoring methods to quantify CBF within the vulnerable cortex continuously and non-invasively. Animal models and imaging biomarkers can provide valuable insights into the mechanisms and kinetics of head injury, as well as insights for potential treatment strategies. For this purpose, we implemented an optical technique for continuous monitoring of blood flow changes after a closed head injury in a mouse model, which is based on laser speckle contrast imaging and a fiber camera-based approach. Our results indicate a significant decrease (~10%, p-value < 0.05) in blood flow within 30 min of a closed head injury. Furthermore, the low-frequency oscillation analysis also indicated much lower power in the trauma group compared to the control group. Overall, blood flow has the potential to be a biomarker for head injuries in the early phase of a trauma, and the system is useful for continuous monitoring with the potential for clinical translation.
Collapse
Affiliation(s)
- Dharminder S. Langri
- Department of Biomedical Engineering, Wright State University, Dayton, OH 45435, USA;
| | - Ulas Sunar
- Department of Biomedical Engineering, Stony Brook University, New York, NY 11794, USA
| |
Collapse
|
3
|
Guo J, Yang X, Chen J, Wang C, Sun Y, Yan C, Ren S, Xiong H, Xiang K, Zhang M, Li C, Jiang G, Xiang X, Wan G, Jiang T, Kang Y, Xu X, Chen Z, Li W. Exosomal miR-125b-5p derived from adipose-derived mesenchymal stem cells enhance diabetic hindlimb ischemia repair via targeting alkaline ceramidase 2. J Nanobiotechnology 2023; 21:189. [PMID: 37308908 DOI: 10.1186/s12951-023-01954-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/03/2023] [Indexed: 06/14/2023] Open
Abstract
INTRODUCTION Ischemic diseases caused by diabetes continue to pose a major health challenge and effective treatments are in high demand. Mesenchymal stem cells (MSCs) derived exosomes have aroused broad attention as a cell-free treatment for ischemic diseases. However, the efficacy of exosomes from adipose-derived mesenchymal stem cells (ADSC-Exos) in treating diabetic lower limb ischemic injury remains unclear. METHODS Exosomes were isolated from ADSCs culture supernatants by differential ultracentrifugation and their effect on C2C12 cells and HUVECs was assessed by EdU, Transwell, and in vitro tube formation assays separately. The recovery of limb function after ADSC-Exos treatment was evaluated by Laser-Doppler perfusion imaging, limb function score, and histological analysis. Subsequently, miRNA sequencing and rescue experiments were performed to figure out the responsible miRNA for the protective role of ADSC-Exos on diabetic hindlimb ischemic injury. Finally, the direct target of miRNA in C2C12 cells was confirmed by bioinformatic analysis and dual-luciferase report gene assay. RESULTS ADSC-Exos have the potential to promote proliferation and migration of C2C12 cells and to promote HUVECs angiogenesis. In vivo experiments have shown that ADSC-Exos can protect ischemic skeletal muscle, promote the repair of muscle injury, and accelerate vascular regeneration. Combined with bioinformatics analysis, miR-125b-5p may be a key molecule in this process. Transfer of miR-125b-5p into C2C12 cells was able to promote cell proliferation and migration by suppressing ACER2 overexpression. CONCLUSION The findings revealed that miR-125b-5p derived from ADSC-Exos may play a critical role in ischemic muscle reparation by targeting ACER2. In conclusion, our study may provide new insights into the potential of ADSC-Exos as a treatment option for diabetic lower limb ischemia.
Collapse
Affiliation(s)
- Jiahe Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yue Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430022, China
| | - Chengqi Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sen Ren
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hewei Xiong
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kaituo Xiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Maojie Zhang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chengcheng Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guoyong Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuejiao Xiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gui Wan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiang Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Wenqing Li
- Department of Hand and Foot Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| |
Collapse
|
4
|
Alexandrescu VA, Brochier S, Schoenen S, Antonelli E, Azdad K, Zekhnini I, Nodit M. Grades of Below-the-Ankle Arterial Occlusive Disease following the Angiosome Perfusion: A New Morphological Assessment and Correlations with the Inframalleolar GVG Stratification in CLTI Patients. Ann Vasc Surg 2021; 81:358-377. [PMID: 34780951 DOI: 10.1016/j.avsg.2021.09.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE To assess a specific classification of the foot atherosclerotic disease concerning the angiosomal source arteries, the connected foot arches and attached collaterals for Rutherford 5, CLTI patients. To compare eventual analogies of this novel grading system with previously reported GLASS/GVG inframalleolar patterns of occlusive disease (P0-P2). MATERIALS AND METHODS A series of 336 ischemic feet (221 diabetics) were selected and retrospectively analyzed. For each angiographic pattern of inframalleolar atherosclerotic disease, 4 severity classes of targeted angiosomal artery path (TAAP), associating 4 other classes concerning linked foot arches (LFA) and collaterals occlusive disease were described. By associating the 4 TAAP with the 4 others parallel LFA and collaterals classes, 4 novel anatomical "Grades" (A-D) of occlusive disease were described. Limb salvage was studied between groups of diabetic and non-diabetic patients. RESULTS Using a primary endovascular approach, limb preservation comparison of grade A/B proved without significance for diabetics (P = 0.032) and non-diabetics (P = 0.226). Comparison in diabetics and/or non-diabetics between A/C (P = 0.045 and 0.046), A/D (P = 0.027 and 0.030, B/C (P = 0.009 and 0.038), and B/D (P = 0.006 and P = 0.042), as well as C/D groups (P = 0.048 and P = 0.034) proved ponderous. Parallel analysis of similar grades (A/A, B/B, etc.) with, or without diabetes appeared without significance (P > 0.05). Further comparison between grades A+B (assigned as P0/GVG), versus C (P1), and D (P2), proved significant (P < 0.0001). CONCLUSION The present grading system proposes a useful correlation between the severity of foot angiosomal arteries, arches, and collaterals disease and limb salvage, confirming the clinical significance of P0-P2 GVG severity score. This analysis also points the limits of EVT to be probably avoided in grade D patients.
Collapse
Affiliation(s)
- Vlad Adrian Alexandrescu
- Department of Vascular and Thoracic Surgery, Princess Paola Hospital Marche-en-Famenne, IFAC/Vivalia, Marche-en-Famenne, Belgium.
| | - Sophie Brochier
- Department of Diabetology, Princess Paola Hospital Marche-en-Famenne, IFAC/Vivalia, Marche-en-Famenne, Belgium.
| | - Sophie Schoenen
- Department of Vascular and Thoracic Surgery, Princess Paola Hospital Marche-en-Famenne, IFAC/Vivalia, Marche-en-Famenne, Belgium.
| | - Elisa Antonelli
- Department of Vascular and Thoracic Surgery, Princess Paola Hospital Marche-en-Famenne, IFAC/Vivalia, Marche-en-Famenne, Belgium.
| | - Khalid Azdad
- Department of Radiology, Princess Paola Hospital Marche-en-Famenne, IFAC/Vivalia, Marche-en-Famenne, Belgium.
| | - Ines Zekhnini
- Department of Vascular and Thoracic Surgery, Princess Paola Hospital Marche-en-Famenne, IFAC/Vivalia, Marche-en-Famenne, Belgium.
| | - Mihaela Nodit
- Department of Geriatric care, Princess Paola Hospital Marche-en-Famenne, IFAC/Vivalia, Marche-en-Famenne, Belgium.
| |
Collapse
|
5
|
Pagliazzi M, Colombo L, Vidal-Rosas EE, Dragojević T, Parfentyeva V, Culver JP, Konugolu Venkata Sekar S, Di Sieno L, Contini D, Torricelli A, Pifferi A, Dalla Mora A, Durduran T. Time resolved speckle contrast optical spectroscopy at quasi-null source-detector separation for non-invasive measurement of microvascular blood flow. BIOMEDICAL OPTICS EXPRESS 2021; 12:1499-1511. [PMID: 33796368 PMCID: PMC7984782 DOI: 10.1364/boe.418882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 05/03/2023]
Abstract
Time (or path length) resolved speckle contrast optical spectroscopy (TD-SCOS) at quasi-null (2.85 mm) source-detector separation was developed and demonstrated. The method was illustrated by in vivo studies on the forearm muscle of an adult subject. The results have shown that selecting longer photon path lengths results in higher hyperemic blood flow change and a faster return to baseline by a factor of two after arterial cuff occlusion when compared to SCOS without time resolution. This indicates higher sensitivity to the deeper muscle tissue. In the long run, this approach may allow the use of simpler and cheaper detector arrays compared to time resolved diffuse correlation spectroscopy that are based on readily available technologies. Hence, TD-SCOS may increase the performance and decrease cost of devices for continuous non-invasive, deep tissue blood flow monitoring.
Collapse
Affiliation(s)
- Marco Pagliazzi
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Lorenzo Colombo
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
| | - Ernesto E. Vidal-Rosas
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Tanja Dragojević
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Veronika Parfentyeva
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Joseph P. Culver
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Laura Di Sieno
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
| | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
| | - Alessandro Torricelli
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, 20133 Milano, Italy
| | - Antonio Pifferi
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, 20133 Milano, Italy
| | | | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08015 Barcelona, Spain
| |
Collapse
|