1
|
Kim T, Choodinatha HK, Kim KS, Shin K, Kim HJ, Park JY, Hong JW, Lee LP. Understanding the role of soluble proteins and exosomes in non-invasive urine-based diagnosis of preeclampsia. Sci Rep 2024; 14:24117. [PMID: 39406891 PMCID: PMC11482518 DOI: 10.1038/s41598-024-75080-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Preeclampsia is a hypertensive disorder of pregnancy that can lead to stillbirth and preterm birth if not treated promptly. Currently, the diagnosis of preeclampsia relies on clinical symptoms such as hypertension and proteinuria, along with invasive blood tests. Here, we investigate the role of soluble proteins and exosomes in noninvasive diagnosing preeclampsia non-invasively using maternal urine and urine-derived exosomes. We quantified the levels of particles and the presence of TSG101 and CD63 in urine and urinary exosomes via the biologically intact exosome separation technology (BEST) platform. Then, we obtained higher levels of soluble proteins such as fms-like tyrosine kinase-1 (sFlt-1) and placental growth factor (PlGF) from urine as it was than urinary exosomes. Compared to commercial blood tests, the sensitivity of the sFlt-1/PlGF ratio was found to be 4.0 times higher in urine tests and 1.5 times higher in tests utilizing urine-derived exosomes. Our findings offer promising possibilities for the early and non-invasive identification of high-risk individuals at risk of preeclampsia, allowing for comprehensive preventive management.
Collapse
Affiliation(s)
- Taewoon Kim
- Department of Bionanotechnology, Graduate School, Hanyang University, Seoul, 04763, Korea
| | - Harshitha Kallubhavi Choodinatha
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
- Seoul National University, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kwang Sik Kim
- Department of Bionanotechnology, Graduate School, Hanyang University, Seoul, 04763, Korea
| | - Kyusoon Shin
- Department of Bionanotechnology, Graduate School, Hanyang University, Seoul, 04763, Korea
| | - Hyeon Ji Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
- Seoul National University, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jee Yoon Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea.
- Seoul National University, Seoul, Korea.
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.
| | - Jong Wook Hong
- Department of Bionanotechnology, Graduate School, Hanyang University, Seoul, 04763, Korea.
- Department of Medical and Digital Engineering, Graduate School, Hanyang University, Seoul, 04763, Korea.
- Department of Bionanoengineering, Hanyang University, 15588, Ansan, Gyeonggi-do, Korea.
| | - Luke P Lee
- Harvard Medical School, Department of Medicine, Harvard University, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA, USA.
- Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA, USA.
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea.
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, Korea.
| |
Collapse
|
2
|
Cao L, Zhou Y, Lin S, Yang C, Guan Z, Li X, Yang S, Gao T, Zhao J, Fan N, Song Y, Li D, Li X, Li Z, Guan F, Tan Z. The trajectory of vesicular proteomic signatures from HBV-HCC by chitosan-magnetic bead-based separation and DIA-proteomic analysis. J Extracell Vesicles 2024; 13:e12499. [PMID: 39207047 PMCID: PMC11359709 DOI: 10.1002/jev2.12499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent primary liver cancer often associated with chronic hepatitis B virus infection (CHB) and liver cirrhosis (LC), underscoring the critical need for biomarker discovery to improve patient outcomes. Emerging as a promising avenue for biomarker development, proteomic technology leveraging liquid biopsy from small extracellular vesicles (sEV) offers new insights. Here, we evaluated various methods for sEV isolation and identified polysaccharide chitosan (CS) as an optimal approach. Subsequently, we employed optimized CS-based magnetic beads (Mag-CS) for sEV separation from serum samples of healthy controls, CHB, LC, and HBV-HCC patients. Leveraging data-independent acquisition mass spectrometry coupled with machine learning, we uncovered potential vesicular protein biomarker signatures (KNG1, F11, KLKB1, CAPNS1, CDH1, CPN2, NME2) capable of distinguishing HBV-HCC from CHB, LC, and non-HCC conditions. Collectively, our findings highlight the utility of Mag-CS-based sEV isolation for identifying early detection biomarkers in HBV-HCC.
Collapse
Affiliation(s)
- Lin Cao
- Institute of HematologyProvincial Key Laboratory of Biotechnology, School of MedicineNorthwest UniversityXi'anShaanxiChina
| | - Yue Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life SciencesNorthwest UniversityXi'anShaanxiChina
| | - Shuai Lin
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Chunyan Yang
- Institute of Basic and Translational MedicineXi'an Medical UniversityXi'anShaanxiChina
| | - Zixuan Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life SciencesNorthwest UniversityXi'anShaanxiChina
| | - Xiaofan Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life SciencesNorthwest UniversityXi'anShaanxiChina
| | - Shujie Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life SciencesNorthwest UniversityXi'anShaanxiChina
| | - Tong Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life SciencesNorthwest UniversityXi'anShaanxiChina
| | - Jiazhen Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life SciencesNorthwest UniversityXi'anShaanxiChina
| | - Ning Fan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life SciencesNorthwest UniversityXi'anShaanxiChina
| | - Yanan Song
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life SciencesNorthwest UniversityXi'anShaanxiChina
| | - Dongmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'anShaanxiP.R. China
| | - Xiang Li
- Institute of HematologyProvincial Key Laboratory of Biotechnology, School of MedicineNorthwest UniversityXi'anShaanxiChina
| | - Zhuo Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life SciencesNorthwest UniversityXi'anShaanxiChina
- Department of Laboratory MedicineThe First Affiliated Hospital of Xi'an Medical UniversityXi'anShaanxiP.R. China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life SciencesNorthwest UniversityXi'anShaanxiChina
| | - Zengqi Tan
- Institute of HematologyProvincial Key Laboratory of Biotechnology, School of MedicineNorthwest UniversityXi'anShaanxiChina
| |
Collapse
|
3
|
Golden TN, Mani S, Linn RL, Leite R, Trigg NA, Wilson A, Anton L, Mainigi M, Conine CC, Kaufman BA, Strauss JF, Parry S, Simmons RA. Extracellular vesicles alter trophoblast function in pregnancies complicated by COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.17.580824. [PMID: 38464046 PMCID: PMC10925147 DOI: 10.1101/2024.02.17.580824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and resulting coronavirus disease (COVID-19) causes placental dysfunction, which increases the risk of adverse pregnancy outcomes. While abnormal placental pathology resulting from COVID-19 is common, direct infection of the placenta is rare. This suggests that pathophysiology associated with maternal COVID-19, rather than direct placental infection, is responsible for placental dysfunction and alteration of the placental transcriptome. We hypothesized that maternal circulating extracellular vesicles (EVs), altered by COVID-19 during pregnancy, contribute to placental dysfunction. To examine this hypothesis, we characterized maternal circulating EVs from pregnancies complicated by COVID-19 and tested their effects on trophoblast cell physiology in vitro . We found that the gestational timing of COVID-19 is a major determinant of circulating EV function and cargo. In vitro trophoblast exposure to EVs isolated from patients with an active infection at the time of delivery, but not EVs isolated from Controls, altered key trophoblast functions including hormone production and invasion. Thus, circulating EVs from participants with an active infection, both symptomatic and asymptomatic cases, can disrupt vital trophoblast functions. EV cargo differed between participants with COVID-19 and Controls, which may contribute to the disruption of the placental transcriptome and morphology. Our findings show that COVID-19 can have effects throughout pregnancy on circulating EVs and circulating EVs are likely to participate in placental dysfunction induced by COVID-19.
Collapse
|
4
|
Jiang Y, Yin X, Xu Q, Tang X, Zhang H, Cao X, Lin J, Wang Y, Yang F, Khan NU, Shen L, Zhao D. SWATH proteomics analysis of placental tissue with intrahepatic cholestasis of pregnancy. Placenta 2023; 137:1-13. [PMID: 37054625 DOI: 10.1016/j.placenta.2023.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/26/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023]
Abstract
INTRODUCTION Intrahepatic cholestasis of pregnancy (ICP) usually occurs in the second and third trimesters. The disease's etiology and diagnostic criteria are currently unknown. Based on a sequence window to obtain all theoretical fragment ions (SWATH) proteomic approach, this study sought to identify potential proteins in placental tissue that may be involved in the pathogenesis of ICP and adverse fetal pregnancy outcomes. METHODS The postpartum placental tissue of pregnant women with ICP were chosen as the case group (ICP group) (subdivided into mild ICP group (MICP group) and severe ICP group (SICP group)), and healthy pregnant women were chosen as the control group (CTR). The hematoxylin-eosin (HE) staining was used to observe the histologic changes of placenta. The SWATH analysis combined with liquid chromatography-tandem mass spectrometry (LC-MS) was used to screen the differentially expressed proteins (DEPs) in ICP and CTR groups, and bioinformatics analysis was used to find out the biological process of these differential proteins. RESULTS Proteomic studies showed there were 126 DEPs from pregnant women with ICP and healthy pregnant women. Most of the identified proteins were functionally related to humoral immune response, cell response to lipopolysaccharide, antioxidant activity and heme metabolism. A subsequent examination of placentas from patients with mild and severe ICP revealed 48 proteins that were differentially expressed. Through death domain receptors and fibrinogen complexes, these DEPs primarily regulate extrinsic apoptotic signaling pathways, blood coagulation, and fibrin clot formation. The differential expressions of HBD, HPX, PDE3A, and PRG4 were down-regulated by Western blot analysis, which was consistent with proteomics. DISCUSSION This preliminary study helps us to understand the changes in the placental proteome of ICP patients, and provides new insights into the pathophysiology of ICP.
Collapse
Affiliation(s)
- Yuxuan Jiang
- Department of Obstetrics and Gynecology Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaoping Yin
- Department of Obstetrics and Gynecology Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qian Xu
- Department of Obstetrics and Gynecology Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Yi Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Fei Yang
- Department of Obstetrics and Gynecology Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China.
| | - Danqing Zhao
- Department of Obstetrics and Gynecology Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
5
|
Ramos BRA, Tronco JA, Carvalho M, Felix TF, Reis PP, Silveira JC, Silva MG. Circulating Extracellular Vesicles microRNAs Are Altered in Women Undergoing Preterm Birth. Int J Mol Sci 2023; 24:ijms24065527. [PMID: 36982598 PMCID: PMC10058006 DOI: 10.3390/ijms24065527] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Preterm labor (PTL) and preterm premature rupture of membranes (PPROM) lead to high perinatal morbidity/mortality rates worldwide. Small extracellular vesicles (sEV) act in cell communication and contain microRNAs that may contribute to the pathogenesis of these complications. We aimed to compare the expression, in sEV from peripheral blood, of miRNAs between term and preterm pregnancies. This cross-sectional study included women who underwent PTL, PPROM, and term pregnancies, examined at the Botucatu Medical School Hospital, SP, Brazil. sEV were isolated from plasma. Western blot used to detect exosomal protein CD63 and nanoparticle tracking analysis were performed. The expression of 800 miRNAs was assessed by the nCounter Humanv3 miRNA Assay (NanoString). The miRNA expression and relative risk were determined. Samples from 31 women—15 preterm and 16 term—were included. miR-612 expression was increased in the preterm groups. miR-612 has been shown to increase apoptosis in tumor cells and to regulate the nuclear factor κB inflammatory pathway, processes involved in PTL/PPROM pathogenesis. miR-1253, miR-1283, miR378e, and miR-579-3p, all associated with cellular senescence, were downregulated in PPROM compared with term pregnancies. We conclude that miRNAs from circulating sEV are differentially expressed between term and preterm pregnancies and modulate genes in pathways that are relevant to PTL/PPROM pathogenesis.
Collapse
Affiliation(s)
- Bruna Ribeiro Andrade Ramos
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 17213-700, SP, Brazil
- Faculty of Medicine—Jaú Campus, University of Western São Paulo (UNOESTE), Jaú 17213-700, SP, Brazil
- Correspondence: ; Tel.: +55-(14)-3624-1109
| | - Júlia Abbade Tronco
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 17213-700, SP, Brazil
| | - Márcio Carvalho
- Faculty of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 17213-700, SP, Brazil
| | - Tainara Francini Felix
- Experimental Research Unity (UNIPEX), Botucatu Medical School, São Paulo State University (UNESP), Botucatu 17213-700, SP, Brazil
| | - Patrícia Pintor Reis
- Department of Surgery and Orthopedics, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 17213-700, SP, Brazil
| | - Juliano Coelho Silveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, São Paulo University (USP), Pirassununga 13635-900, SP, Brazil
| | - Márcia Guimarães Silva
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 17213-700, SP, Brazil
| |
Collapse
|
6
|
Lee J, Park HS, Han SR, Kang YH, Mun JY, Shin DW, Oh HW, Cho YK, Lee MS, Park J. Alpha-2-macroglobulin as a novel diagnostic biomarker for human bladder cancer in urinary extracellular vesicles. Front Oncol 2022; 12:976407. [PMID: 36176383 PMCID: PMC9513419 DOI: 10.3389/fonc.2022.976407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs) derived from urine are promising tools for the diagnosis of urogenital cancers. Urinary EVs (uEVs) are considered potential biomarkers for bladder cancer (BC) because urine is in direct contact with the BC tumor microenvironment and thus reflects the current state of the disease. However, challenges associated with the effective isolation and analysis of uEVs complicate the clinical detection of uEV-associated protein biomarkers. Herein, we identified uEV-derived alpha-2-macroglobulin (a2M) as a novel diagnostic biomarker for BC through comparative analysis of uEVs obtained from patients with BC pre- and post-operation using an antibody array. Furthermore, enzyme-linked immunosorbent assay of uEVs isolated from patients with BC (n=60) and non-cancer control subjects (n=23) validated the significant upregulation of a2M expression in patient uEVs (p<0.0001). There was no significant difference in whole urine a2M levels between patients with BC and controls (p=0.317). We observed that compared to classical differential centrifugation, ExoDisc, a centrifugal microfluidic tangential flow filtration device, was a significantly more effective separation method for uEV protein analysis. We expect that our approach for EV analysis will provide an efficient route for the identification of clinically meaningful uEV-based biomarkers for cancer diagnosis.
Collapse
Affiliation(s)
- Jisu Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
| | - Hyun Sik Park
- Department of Urology, Eulji University Hospital, Eulji University School of Medicine, Daejeon, South Korea
| | - Seung Ro Han
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, South Korea
| | - Yun Hee Kang
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, South Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Dong Wook Shin
- Department of Family Medicine/Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hyun-Woo Oh
- Core Facility Management Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Yoon-Kyoung Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, South Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, South Korea
- *Correspondence: Myung-Shin Lee, ; Jinsung Park,
| | - Jinsung Park
- Department of Urology, Eulji University Hospital, Eulji University School of Medicine, Daejeon, South Korea
- Department of Urology, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu-si, South Korea
- *Correspondence: Myung-Shin Lee, ; Jinsung Park,
| |
Collapse
|
7
|
Comprehensive Landscape of Modules-Dysregulated Functions Reveals a Profound Role of ceRNAs in Coronary Heart Disease. JOURNAL OF HEALTHCARE ENGINEERING 2022. [DOI: 10.1155/2022/4547413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Coronary heart disease (CHD) is one of the most common severe cardiovascular diseases. Competitive endogenous RNAs (ceRNA) play critical roles in complex diseases. However, our understanding of the dysregulated functions of ceRNAs in CHD remains limited. Here, we systematically analyzed the alterations of ceRNAs and identified the specific functions based on dysregulated modules from the ceRNA network. A total of 2457 significantly differential expressed genes and 212 differential expressed lncRNAs were identified. We got 76679 regulator relationship between different expression genes and miRNAs and 336 regulator relationship between differential expressed lncRNAs and miRNAs. We constructed the ceRNA network and selected five dysregulated modules. Furthermore, CHD specific functions based on dysregulated modules from the ceRNA network were identified, including histone acetylation, platelet degranulation, cAMP-dependent protein kinase complex, xenobiotic transport and so on. Our results will provide novel insight for a better understanding of the mechanism of ceRNAs and facilitate the identification of novel diagnostic and therapeutic biomarkers in CHD.
Collapse
|
8
|
Yang L, Wang T, Zhang X, Zhang H, Yan N, Zhang G, Yan R, Li Y, Yu J, He J, Jia S, Wang H. Exosomes derived from human placental mesenchymal stem cells ameliorate myocardial infarction via anti-inflammation and restoring gut dysbiosis. BMC Cardiovasc Disord 2022; 22:61. [PMID: 35172728 PMCID: PMC8851843 DOI: 10.1186/s12872-022-02508-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/09/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Myocardial infarction (MI) represents a severe cardiovascular disease with limited therapeutic agents. This study was aimed to elucidate the role of the exosomes derived from human placental mesenchymal stem cells (PMSCs-Exos) in MI. METHODS PMSCs were isolated and cultured in vitro, with identification by both transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). To further investigate the effects of PMSC-Exos on MI, C57BL/6 mice were randomly divided into Sham group, MI group, and PMSC-Exos group. After 4 weeks of the intervention, cardiac function was assessed by cardiac echocardiography, electrocardiogram and masson trichrome staining; lipid indicators were determined by automatic biochemical instrument; inflammatory cytokines were measured by cytometric bead array (CBA); gut microbiota, microbial metabolites short chain fatty acids (SCFAs) as well as lipopolysaccharide (LPS) were separately investigated by 16S rRNA high throughput sequencing, gas chromatography mass spectrometry (GC-MS) and tachypleus amebocyte lysate kit; transcriptome analysis was used to test the transcriptional components (mRNA\miRNA\cirRNA\lncRNA) of PMSC-Exos. RESULTS We found that human PMSC-Exos were obtained and identified with high purity and uniformity. MI model was successfully established. Compared to MI group, PMSC-Exos treatment ameliorated myocardial fibrosis and left ventricular (LV) remodeling (P < 0.05). Moreover, PMSC-Exos treatment obviously decreased MI molecular markers (AST/BNP/MYO/Tn-I/TC), pro-inflammatory indicators (IL-1β, IL-6, TNF-α, MCP-1), as well as increased HDL in comparison with MI group (all P < 0.05). Intriguingly, PMSC-Exos intervention notably modulated gut microbial community via increasing the relative abundances of Bacteroidetes, Proteobacteria, Verrucomicrobia, Actinobacteria, Akkermansia, Bacteroides, Bifidobacterium, Thauera and Ruminiclostridium, as well as decreasing Firmicutes (all P < 0.05), compared with MI group. Furthermore, PMSC-Exos supplementation increased gut microbiota metabolites SCFAs (butyric acid, isobutyric acid and valeric acid) and decreased LPS in comparison with MI group (all P < 0.05). Correlation analysis indicated close correlations among gut microbiota, microbial SCFAs and inflammation in MI. CONCLUSIONS Our study highlighted that PMSC-Exos intervention alleviated MI via modulating gut microbiota and suppressing inflammation.
Collapse
Affiliation(s)
- Libo Yang
- Clinical Medical College, Ningxia Medical University, Yinchuan, 750004 Ningxia China
- Heart Centre and Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, 750004 Ningxia China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004 China
| | - Ting Wang
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004 Ningxia China
| | - Xiaoxia Zhang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004 Ningxia China
| | - Hua Zhang
- Heart Centre and Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, 750004 Ningxia China
| | - Ning Yan
- Clinical Medical College, Ningxia Medical University, Yinchuan, 750004 Ningxia China
- Heart Centre and Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, 750004 Ningxia China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004 China
| | - Guoshan Zhang
- Heart Centre and Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, 750004 Ningxia China
| | - Ru Yan
- Heart Centre and Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, 750004 Ningxia China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004 China
| | - Yiwei Li
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004 Ningxia China
| | - Jingjing Yu
- Clinical Medical College, Ningxia Medical University, Yinchuan, 750004 Ningxia China
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jun He
- Heart Centre and Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, 750004 Ningxia China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004 China
| | - Shaobin Jia
- Clinical Medical College, Ningxia Medical University, Yinchuan, 750004 Ningxia China
- Heart Centre and Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, 750004 Ningxia China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004 China
| | - Hao Wang
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004 Ningxia China
| |
Collapse
|
9
|
Preterm Labor, a Syndrome Attributed to the Combination of External and Internal Factors. MATERNAL-FETAL MEDICINE 2022. [DOI: 10.1097/fm9.0000000000000136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|