1
|
da Silva FS, do Nascimento BLS, Cruz ACR, da Silva SP, Aragão CF, Dias DD, Silva LHDSE, Reis LAM, Reis HCF, Chagas LLD, Rosa Jr. JW, Vieira DBR, Brandão RCF, Medeiros DBDA, Nunes Neto JP. Sequencing and Description of the Mitochondrial Genome of Orthopodomyia fascipes (Diptera: Culicidae). Genes (Basel) 2024; 15:874. [PMID: 39062653 PMCID: PMC11276460 DOI: 10.3390/genes15070874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
The genus Orthopodomyia Theobald, 1904 (Diptera: Culicidae) comprises 36 wild mosquito species, with distribution largely restricted to tropical and temperate areas, most of which are not recognized as vectors of epidemiological importance due to the lack of information related to their bionomy and involvement in the cycle transmission of infectious agents. Furthermore, their evolutionary relationships are not completely understood, reflecting the scarcity of genetic information about the genus. Therefore, in this study, we report the first complete description of the mitochondrial genome of a Neotropical species representing the genus, Orthopodomyia fascipes Coquillet, 1906, collected in the Brazilian Amazon region. Using High Throughput Sequencing, we obtained a mitochondrial sequence of 15,598 bp, with an average coverage of 418.5×, comprising 37 functional subunits and a final portion rich in A + T, corresponding to the control region. The phylogenetic analysis, using Maximum Likelihood and Bayesian Inference based on the 13 protein-coding genes, corroborated the monophyly of Culicidae and its two subfamilies, supporting the proximity between the tribes Orthopodomyiini and Mansoniini, partially disagreeing with previous studies based on the use of molecular and morphological markers. The information generated in this study contributes to a better understanding of the taxonomy and evolutionary history of the genus and other groups of Culicidae.
Collapse
Affiliation(s)
- Fábio Silva da Silva
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil; (F.S.d.S.); (A.C.R.C.); (D.D.D.); (L.H.d.S.e.S.); (L.A.M.R.); (H.C.F.R.); (D.B.d.A.M.)
- Evandro Chagas Institute—IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua 67030-000, Brazil; (B.L.S.d.N.); (S.P.d.S.); (C.F.A.); (L.L.d.C.); (J.W.R.J.); (D.B.R.V.); (R.C.F.B.)
| | - Bruna Laís Sena do Nascimento
- Evandro Chagas Institute—IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua 67030-000, Brazil; (B.L.S.d.N.); (S.P.d.S.); (C.F.A.); (L.L.d.C.); (J.W.R.J.); (D.B.R.V.); (R.C.F.B.)
| | - Ana Cecília Ribeiro Cruz
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil; (F.S.d.S.); (A.C.R.C.); (D.D.D.); (L.H.d.S.e.S.); (L.A.M.R.); (H.C.F.R.); (D.B.d.A.M.)
- Evandro Chagas Institute—IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua 67030-000, Brazil; (B.L.S.d.N.); (S.P.d.S.); (C.F.A.); (L.L.d.C.); (J.W.R.J.); (D.B.R.V.); (R.C.F.B.)
| | - Sandro Patroca da Silva
- Evandro Chagas Institute—IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua 67030-000, Brazil; (B.L.S.d.N.); (S.P.d.S.); (C.F.A.); (L.L.d.C.); (J.W.R.J.); (D.B.R.V.); (R.C.F.B.)
| | - Carine Fortes Aragão
- Evandro Chagas Institute—IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua 67030-000, Brazil; (B.L.S.d.N.); (S.P.d.S.); (C.F.A.); (L.L.d.C.); (J.W.R.J.); (D.B.R.V.); (R.C.F.B.)
| | - Daniel Damous Dias
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil; (F.S.d.S.); (A.C.R.C.); (D.D.D.); (L.H.d.S.e.S.); (L.A.M.R.); (H.C.F.R.); (D.B.d.A.M.)
- Evandro Chagas Institute—IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua 67030-000, Brazil; (B.L.S.d.N.); (S.P.d.S.); (C.F.A.); (L.L.d.C.); (J.W.R.J.); (D.B.R.V.); (R.C.F.B.)
| | - Lucas Henrique da Silva e Silva
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil; (F.S.d.S.); (A.C.R.C.); (D.D.D.); (L.H.d.S.e.S.); (L.A.M.R.); (H.C.F.R.); (D.B.d.A.M.)
- Evandro Chagas Institute—IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua 67030-000, Brazil; (B.L.S.d.N.); (S.P.d.S.); (C.F.A.); (L.L.d.C.); (J.W.R.J.); (D.B.R.V.); (R.C.F.B.)
| | - Lúcia Aline Moura Reis
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil; (F.S.d.S.); (A.C.R.C.); (D.D.D.); (L.H.d.S.e.S.); (L.A.M.R.); (H.C.F.R.); (D.B.d.A.M.)
- Evandro Chagas Institute—IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua 67030-000, Brazil; (B.L.S.d.N.); (S.P.d.S.); (C.F.A.); (L.L.d.C.); (J.W.R.J.); (D.B.R.V.); (R.C.F.B.)
| | - Hanna Carolina Farias Reis
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil; (F.S.d.S.); (A.C.R.C.); (D.D.D.); (L.H.d.S.e.S.); (L.A.M.R.); (H.C.F.R.); (D.B.d.A.M.)
- Evandro Chagas Institute—IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua 67030-000, Brazil; (B.L.S.d.N.); (S.P.d.S.); (C.F.A.); (L.L.d.C.); (J.W.R.J.); (D.B.R.V.); (R.C.F.B.)
| | - Liliane Leal das Chagas
- Evandro Chagas Institute—IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua 67030-000, Brazil; (B.L.S.d.N.); (S.P.d.S.); (C.F.A.); (L.L.d.C.); (J.W.R.J.); (D.B.R.V.); (R.C.F.B.)
| | - José Wilson Rosa Jr.
- Evandro Chagas Institute—IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua 67030-000, Brazil; (B.L.S.d.N.); (S.P.d.S.); (C.F.A.); (L.L.d.C.); (J.W.R.J.); (D.B.R.V.); (R.C.F.B.)
| | - Durval Bertram Rodrigues Vieira
- Evandro Chagas Institute—IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua 67030-000, Brazil; (B.L.S.d.N.); (S.P.d.S.); (C.F.A.); (L.L.d.C.); (J.W.R.J.); (D.B.R.V.); (R.C.F.B.)
| | - Roberto Carlos Feitosa Brandão
- Evandro Chagas Institute—IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua 67030-000, Brazil; (B.L.S.d.N.); (S.P.d.S.); (C.F.A.); (L.L.d.C.); (J.W.R.J.); (D.B.R.V.); (R.C.F.B.)
| | - Daniele Barbosa de Almeida Medeiros
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil; (F.S.d.S.); (A.C.R.C.); (D.D.D.); (L.H.d.S.e.S.); (L.A.M.R.); (H.C.F.R.); (D.B.d.A.M.)
- Evandro Chagas Institute—IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua 67030-000, Brazil; (B.L.S.d.N.); (S.P.d.S.); (C.F.A.); (L.L.d.C.); (J.W.R.J.); (D.B.R.V.); (R.C.F.B.)
| | - Joaquim Pinto Nunes Neto
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil; (F.S.d.S.); (A.C.R.C.); (D.D.D.); (L.H.d.S.e.S.); (L.A.M.R.); (H.C.F.R.); (D.B.d.A.M.)
- Evandro Chagas Institute—IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua 67030-000, Brazil; (B.L.S.d.N.); (S.P.d.S.); (C.F.A.); (L.L.d.C.); (J.W.R.J.); (D.B.R.V.); (R.C.F.B.)
| |
Collapse
|
2
|
de Sousa AA, Cruz ACR, da Silva FS, da Silva SP, Neto JPN, Barros MC, Fraga EDC, Sampaio I. Sequencing and Analysis of the Mitochondrial Genome of Aedes aegypti (Diptera: Culicidae) from the Brazilian Amazon Region. INSECTS 2023; 14:938. [PMID: 38132611 PMCID: PMC10744036 DOI: 10.3390/insects14120938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
Aedes aegypti is a mosquito native to the African continent, which is now widespread in the tropical and subtropical regions of the world. In many regions, it represents a major challenge to public health, given its role in the cycle of transmission of important arboviruses, such as Dengue, Zika, and Chikungunya. Considering the epidemiological importance of Ae. aegypti, the present study sequenced the partial mitochondrial genome of a sample collected in the municipality of Balsas, in the Brazilian state of Maranhão, followed by High Throughput Sequencing and phylogenetic analyses. The mitochondrial sequence obtained here was 15,863 bp long, and contained 37 functional subunits (thirteen PCGs, twenty-two tRNAs and two rRNAs) in addition to a partial final portion rich in A+T. The data obtained here contribute to the enrichment of our knowledge of the taxonomy and evolutionary biology of this prominent disease vector. These findings represent an important advancement in the understanding of the characteristics of the populations of northeastern Brazil and provide valuable insights into the taxonomy and evolutionary biology of this prominent disease vector.
Collapse
Affiliation(s)
- Andrelina Alves de Sousa
- Post-Graduate Program in Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Pará, Brazil;
| | - Ana Cecília Ribeiro Cruz
- Evandro Chagas Institute (IEC/SVS/MS), Department of Arbovirology and Hemorrhagic Fevers, Ananindeua 67030-000, Pará, Brazil; (A.C.R.C.); (F.S.d.S.); (S.P.d.S.); (J.P.N.N.)
- Post-Graduate Program in Parasite Biology in the Amazon, Center of Biological and Health Sciences, Pará State University, Belém 66095-662, Pará, Brazil
| | - Fábio Silva da Silva
- Evandro Chagas Institute (IEC/SVS/MS), Department of Arbovirology and Hemorrhagic Fevers, Ananindeua 67030-000, Pará, Brazil; (A.C.R.C.); (F.S.d.S.); (S.P.d.S.); (J.P.N.N.)
- Post-Graduate Program in Parasite Biology in the Amazon, Center of Biological and Health Sciences, Pará State University, Belém 66095-662, Pará, Brazil
| | - Sandro Patroca da Silva
- Evandro Chagas Institute (IEC/SVS/MS), Department of Arbovirology and Hemorrhagic Fevers, Ananindeua 67030-000, Pará, Brazil; (A.C.R.C.); (F.S.d.S.); (S.P.d.S.); (J.P.N.N.)
| | - Joaquim Pinto Nunes Neto
- Evandro Chagas Institute (IEC/SVS/MS), Department of Arbovirology and Hemorrhagic Fevers, Ananindeua 67030-000, Pará, Brazil; (A.C.R.C.); (F.S.d.S.); (S.P.d.S.); (J.P.N.N.)
- Post-Graduate Program in Parasite Biology in the Amazon, Center of Biological and Health Sciences, Pará State University, Belém 66095-662, Pará, Brazil
| | - Maria Claudene Barros
- Laboratory of Genetics and Molecular Biology (GENBIMOL), Maranhão State University, Caxias 65604-380, Maranhão, Brazil; (M.C.B.); (E.d.C.F.)
| | - Elmary da Costa Fraga
- Laboratory of Genetics and Molecular Biology (GENBIMOL), Maranhão State University, Caxias 65604-380, Maranhão, Brazil; (M.C.B.); (E.d.C.F.)
| | - Iracilda Sampaio
- Laboratory of Evolution, Institute of Coastal Studies, Federal University of Pará, Bragança 68600-000, Pará, Brazil
| |
Collapse
|
3
|
Dong H, Yuan H, Yang X, Shan W, Zhou Q, Tao F, Zhao C, Bai J, Li X, Ma Y, Peng H. Phylogenetic Analysis of Some Species of the Anopheles hyrcanus Group (Diptera: Culicidae) in China Based on Complete Mitochondrial Genomes. Genes (Basel) 2023; 14:1453. [PMID: 37510357 PMCID: PMC10379722 DOI: 10.3390/genes14071453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Some species of the Hyrcanus group are vectors of malaria in China. However, the member species are difficult to identify accurately by morphology. The development of sequencing technologies offers the possibility of further studies based on the complete mitochondrial genome. In this study, samples of mosquitoes of the Hyrcanus group were collected in China between 1997 and 2015. The mitochondrial genomes of ten species of the Hyrcanus group were analyzed, including the structure and base composition, codon usage, secondary structure of tRNA, and base difference sites in protein coding regions. Phylogenetic analyses using maximum-likelihood and Bayesian inference were performed based on mitochondrial genes and complete mitochondrial genomes The mitochondrial genome of 10 Hyrcanus group members ranged from 15,403 bp to 15,475 bp, with an average 78.23% (A + T) content, comprising of 13 PCGs (protein coding genes), 22 tRNAs, and 2 rRNAs. Site differences between some closely related species in the PCGs were small. There were only 36 variable sites between Anopheles sinensis and Anopheles belenrae for a variation ratio of 0.32% in all PCGs. The pairwise interspecies distance based on 13 PCGs was low, with an average of 0.04. A phylogenetic tree constructed with the 13 PCGs was consistent with the known evolutionary relationships. Some phylogenetic trees constructed by single coding regions (such as COI or ND4) or combined coding regions (COI + ND2 + ND4 + ND5 or ND2 + ND4) were consistent with the phylogenetic tree constructed using the 13 PCGs. The phylogenetic trees constructed using some coding genes (COII, ND5, tRNAs, 12S rRNA, and 16S rRNA) differed from the phylogenetic tree constructed using PCGs. The difference in mitochondrial genome sequences between An. sinensis and An. belenrae was very small, corresponding to intraspecies difference, suggesting that the species was in the process of differentiation. The combination of all 13 PCG sequences was demonstrated to be optimal for phylogenetic analysis in closely related species.
Collapse
Affiliation(s)
- Haowei Dong
- Department of Pathogen Biology, College of Basic Medical, Naval Medical University, Shanghai 200433, China
| | - Hao Yuan
- College of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Xusong Yang
- Department of Pathogen Biology, College of Basic Medical, Naval Medical University, Shanghai 200433, China
| | - Wenqi Shan
- College of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Qiuming Zhou
- College of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Feng Tao
- College of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Chunyan Zhao
- Department of Pathogen Biology, College of Basic Medical, Naval Medical University, Shanghai 200433, China
| | - Jie Bai
- Department of Pathogen Biology, College of Basic Medical, Naval Medical University, Shanghai 200433, China
| | - Xiangyu Li
- Department of Pathogen Biology, College of Basic Medical, Naval Medical University, Shanghai 200433, China
| | - Yajun Ma
- College of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Heng Peng
- Department of Pathogen Biology, College of Basic Medical, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
4
|
Loaiza JR, Bennett KL, Miller MJ, De León LF. Unraveling the genomic complexity of sylvatic mosquitoes in changing Neotropical environments. Curr Opin Biotechnol 2023; 81:102944. [PMID: 37099930 DOI: 10.1016/j.copbio.2023.102944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 04/28/2023]
Abstract
Sylvatic New World mosquitoes (e.g. Old-growth Forest species) can transmit viruses among non-human primates. This could be a continuous source of viral cycling and spillover events from animals to humans, particularly in changing environments. However, most species of Neotropical sylvatic mosquitoes (genera Aedes, Haemagogus, and Sabethes), which include vector and non-vector species, currently lack genomic resources because there is no reliable and accurate approach for creating de novo reference genomes for these insects. This is a major knowledge gap in the biology of these mosquitoes, restricting our ability to predict and mitigate the emergence and spread of novel arboviruses in Neotropical regions. We discuss recent advances and potential solutions for generating hybrid de novo assemblies from vector and non-vector species using pools of consanguineous offspring. We also discussed research opportunities likely to emerge from these genomic resources.
Collapse
Affiliation(s)
- Jose R Loaiza
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Ciudad del Saber, Clayton 0843-01103, Republic of Panama.
| | - Kelly L Bennett
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Matthew J Miller
- RENECO International Wildlife Consultants LLC, Al Reem Island, Abu Dhabi, UAE
| | - Luis F De León
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Ciudad del Saber, Clayton 0843-01103, Republic of Panama; Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| |
Collapse
|
5
|
da Silva FS, do Nascimento BLS, Cruz ACR, da Silva SP, Aragão ADO, Dias DD, da Silva E Silva LH, Reis LAM, Rosa JW, Vieira DBR, Medeiros DBDA, Neto JPN. Sequencing and description of the complete mitochondrial genome of Limatus durhamii (Diptera: Culicidae). Acta Trop 2023; 239:106805. [PMID: 36574895 DOI: 10.1016/j.actatropica.2022.106805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
The genus Limatus (Diptera: Culicidae) are wild mosquitoes belonging to the Sabethini tribe that occurs in tropical countries and is related to transmission cycles of Orthobunyavirus (Bunyaviridae), particularly in the Amazon region. Given the unavailability of information related to evolutionary biology and molecular taxonomy aspects of this genus, we report here the first complete sequencing of the mitochondrial genome of Limatus durhamii Theobald, 1901. The NextSeq 500 platform was used for sample sequencing, and the mitochondrial sequence obtained was 14,875 bp long, comprising 37 functional subunits (13 PCGs, 22 tRNA and 02 rRNA). The phylogeny reconstructed by maximum likelihood based on the concatenation of all 13 PCGs corroborated the known taxonomic classification based most on aspects of the external morphology and few molecular studies. The data and information produced here may be useful in the future development of taxonomic and evolutionary studies for the genus, as well as the Culicidae family itself.
Collapse
Affiliation(s)
- Fábio Silva da Silva
- Post-graduate program in Parasitary Biology in the Amazon, Center of Biological and Health Sciences, State of Pará University, Belém 66095-662, Brazil; Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute - IEC/SVS/MS, Ananindeua 67030-000, Brazil
| | - Bruna Laís Sena do Nascimento
- Post-graduate program in Parasitary Biology in the Amazon, Center of Biological and Health Sciences, State of Pará University, Belém 66095-662, Brazil; Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute - IEC/SVS/MS, Ananindeua 67030-000, Brazil
| | - Ana Cecília Ribeiro Cruz
- Post-graduate program in Parasitary Biology in the Amazon, Center of Biological and Health Sciences, State of Pará University, Belém 66095-662, Brazil; Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute - IEC/SVS/MS, Ananindeua 67030-000, Brazil
| | - Sandro Patroca da Silva
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute - IEC/SVS/MS, Ananindeua 67030-000, Brazil
| | - Andressa de Oliveira Aragão
- Post-graduate program in Genetics and Molecular Biology, Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Daniel Damous Dias
- Post-graduate program in Parasitary Biology in the Amazon, Center of Biological and Health Sciences, State of Pará University, Belém 66095-662, Brazil
| | - Lucas Henrique da Silva E Silva
- Post-graduate program in Parasitary Biology in the Amazon, Center of Biological and Health Sciences, State of Pará University, Belém 66095-662, Brazil
| | - Lúcia Aline Moura Reis
- Post-graduate program in Parasitary Biology in the Amazon, Center of Biological and Health Sciences, State of Pará University, Belém 66095-662, Brazil
| | - José Wilson Rosa
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute - IEC/SVS/MS, Ananindeua 67030-000, Brazil
| | | | - Daniele Barbosa de Almeida Medeiros
- Post-graduate program in Parasitary Biology in the Amazon, Center of Biological and Health Sciences, State of Pará University, Belém 66095-662, Brazil; Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute - IEC/SVS/MS, Ananindeua 67030-000, Brazil
| | - Joaquim Pinto Nunes Neto
- Post-graduate program in Parasitary Biology in the Amazon, Center of Biological and Health Sciences, State of Pará University, Belém 66095-662, Brazil; Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute - IEC/SVS/MS, Ananindeua 67030-000, Brazil.
| |
Collapse
|
6
|
Aragão ADO, da Silva FS, Cruz ACR, da Silva SP, Medeiros DBDA, Dias DD, Sena do Nascimento BL, Júnior JWR, Monteiro HADO, Neto JPN. Description of mitochon genome and phylogenetic considerations of Sabethes bipartipes, Sabethes cyaneus, Sabethes quasicyaneus, and Sabethes tarsopus (Diptera: Culicidae). Acta Trop 2022; 232:106493. [PMID: 35525314 DOI: 10.1016/j.actatropica.2022.106493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/19/2022]
Abstract
The genus Sabethes (Diptera: Culicidae) comprises species of great epidemiological relevance, particularly involved in transmission cycles of the Yellow fever virus in South America. Given the unavailability of information related to aspects of evolutionary biology and molecular taxonomy of species of this genus of mosquitoes, we report here the first sequencing of the mitochondrial genomes of Sabethes bipartipes, Sabethes cyaneus, Sabethes tarsopus, and Sabethes quasicyaneus. The sequences obtained showed an average length of 14,920 bp, comprising 37 functional genes (13 PCGs, 22 tRNA, and 02 rRNA). The phylogenies reconstructed by Maximum likelihood and Bayesian inference methods, based on the concatenated sequences of all 13 PCGs, produced similar topologies and strongly supported the monophyletic relationship between the Sabethes subgenera, corroborating the known taxonomic classification based on aspects of the external morphology of the taxa assessed. The data and information produced from the Sabethes species evaluated here may be useful for future taxonomic and evolutionary studies of the genus, as well as the Culicidae family.
Collapse
Affiliation(s)
- Andressa de Oliveira Aragão
- Post-graduate program in Genetics and Molecular Biology, Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Fábio Silva da Silva
- Post-graduate program in Parasitary Biology in the Amazon, Center of Biological and Health Sciences, State of Pará University, Belém 66095-662, Brazil; Evandro Chagas Institute - IEC/SVS/MS, Department of Arbovirology and Hemorrhagic Fevers, Ananindeua 67030-000, Brazil.
| | - Ana Cecília Ribeiro Cruz
- Evandro Chagas Institute - IEC/SVS/MS, Department of Arbovirology and Hemorrhagic Fevers, Ananindeua 67030-000, Brazil.
| | - Sandro Patroca da Silva
- Evandro Chagas Institute - IEC/SVS/MS, Department of Arbovirology and Hemorrhagic Fevers, Ananindeua 67030-000, Brazil.
| | | | - Daniel Damous Dias
- Post-graduate program in Parasitary Biology in the Amazon, Center of Biological and Health Sciences, State of Pará University, Belém 66095-662, Brazil
| | - Bruna Laís Sena do Nascimento
- Post-graduate program in Parasitary Biology in the Amazon, Center of Biological and Health Sciences, State of Pará University, Belém 66095-662, Brazil; Evandro Chagas Institute - IEC/SVS/MS, Department of Arbovirology and Hemorrhagic Fevers, Ananindeua 67030-000, Brazil.
| | - José Wilson Rosa Júnior
- Evandro Chagas Institute - IEC/SVS/MS, Department of Arbovirology and Hemorrhagic Fevers, Ananindeua 67030-000, Brazil.
| | | | - Joaquim Pinto Nunes Neto
- Post-graduate program in Parasitary Biology in the Amazon, Center of Biological and Health Sciences, State of Pará University, Belém 66095-662, Brazil; Evandro Chagas Institute - IEC/SVS/MS, Department of Arbovirology and Hemorrhagic Fevers, Ananindeua 67030-000, Brazil.
| |
Collapse
|
7
|
da Silva e Silva LH, da Silva FS, Medeiros DBDA, Cruz ACR, da Silva SP, Aragão ADO, Dias DD, Sena do Nascimento BL, Júnior JWR, Vieira DBR, Monteiro HADO, Neto JPN. Description of the mitogenome and phylogeny of Aedes spp. (Diptera: Culicidae) from the Amazon region. Acta Trop 2022; 232:106500. [PMID: 35584780 DOI: 10.1016/j.actatropica.2022.106500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 11/01/2022]
Abstract
The genus Aedes (Diptera: Culicidae) includes species of great epidemiological relevance, particularly involved in transmission cycles of leading arboviruses in the Brazilian Amazon region, such as the Zika virus (ZIKV), Dengue virus (DENV), Yellow fever virus (YFV), and Chikungunya virus (CHIKV). We report here the first putatively complete sequencing of the mitochondrial genomes of Brazilian populations of the species Aedes albopictus, Aedes scapularis and Aedes serratus. The sequences obtained showed an average length of 14,947 bp, comprising 37 functional subunits, typical in animal mitochondria (13 PCGs, 22 tRNA, and 2 rRNA). The phylogeny reconstructed by Maximum likelihood method, based on the concatenated sequences of all 13 PCGs produced at least two non-directly related groupings, composed of representatives of the subgenus Ochlerotatus and Stegomyia of the genus Aedes. The data and information produced here may be useful for future taxonomic and evolutionary studies of the genus Aedes, as well as the Culicidae family.
Collapse
|
8
|
Ma XX, Wang FF, Wu TT, Li Y, Sun XJ, Wang CR, Chang QC. First description of the mitogenome and phylogeny:Aedes vexansand Ochlerotatus caspius of the Tribe Aedini (Diptera: Culicidae). INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 102:105311. [PMID: 35640863 DOI: 10.1016/j.meegid.2022.105311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Culicidae, the mosquito family, includes more than 3600 species subdivided into the subfamilies Anophelinae and Culicinae. One-third of mosquitoes belong to the Aedini tribe, which is subordinate to the subfamily Culicinae, which comprises common vectors of viral zoonoses. The tribe of Aedini is extremely diverse in morphology and geographical distribution and has high ecological and medical significance. However, knowledge about the systematics of the Aedini tribe is still limited owing to its large population and the similar morphological characteristics of its species. This study provides the first description of the complete mitochondrial (mt) genome sequence of Aedes vexans and Ochlerotatus caspius belonging to the Aedini tribe. The mt genomes of A. vexans and O. caspius are circular molecules that are 15,861 bp and 15,954 bp in size, with AT contents of 78.54% and 79.36%, respectively. Both the circular mt genomes comprise 37 functional subunits, including 13 protein-coding genes (PCGs), two ribosomal RNA genes, 22 transfer RNA genes (tRNAs), and a control region (also known as the AT-rich region). The most common start codons are ATT/ATG, apart from cox1 (TCG) and nad5 (GTG), while TAA is the termination codon for all PCGs. All tRNAs have a typical clover leaf structure, except tRNA Ser1. Phylogenetic analysis of the concatenated, aligned amino acid sequences of the 13 PCGs showed that A. vexans gathered with Aedes sp. in a sister taxon, and O. caspius gathered with Ochlerotatus sp. in a sister taxon. The findings from the present study support the concept of monophyly of all groups, ratify the current taxonomic classification, and provide vital molecular marker resources for further studies of the taxonomy, population genetics, and systematics of the Aedini tribe.
Collapse
Affiliation(s)
- Xiao-Xiao Ma
- School of Public Health, Shantou University, Shantou, Guangdong Province 515063, PR China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Feng-Feng Wang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Ting-Ting Wu
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Ye Li
- Branch of Animal Husbandry and Veterinary Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, Heilongjiang Province 161005, PR China
| | - Xiao-Jing Sun
- School of Basic Medical Sciences, Xi'an Medical University, Xi'an, Shanxi Province 710021, PR China
| | - Chun-Ren Wang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Qiao-Cheng Chang
- School of Public Health, Shantou University, Shantou, Guangdong Province 515063, PR China.
| |
Collapse
|
9
|
do Nascimento BLS, da Silva FS, Nunes-Neto JP, de Almeida Medeiros DB, Cruz ACR, da Silva SP, da Silva e Silva LH, de Oliveira Monteiro HA, Dias DD, Vieira DBR, Rosa JW, Brandão RCF, Chiang JO, Martins LC, da Costa Vasconcelos PF. First Description of the Mitogenome and Phylogeny of Culicinae Species from the Amazon Region. Genes (Basel) 2021; 12:genes12121983. [PMID: 34946932 PMCID: PMC8701802 DOI: 10.3390/genes12121983] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 01/25/2023] Open
Abstract
The Culicidae family is distributed worldwide and comprises about 3587 species subdivided into the subfamilies Anophelinae and Culicinae. This is the first description of complete mitochondrial DNA sequences from Aedes fluviatilis, Aedeomyia squamipennis, Coquillettidia nigricans, Psorophora albipes, and Psorophora ferox. The mitogenomes showed an average length of 15,046 pb and 78.02% AT content, comprising 37 functional subunits (13 protein coding genes, 22 tRNAs, and two rRNAs). The most common start codons were ATT/ATG, and TAA was the stop codon for all PCGs. The tRNAs had the typical leaf clover structure, except tRNASer1. Phylogeny was inferred by analyzing the 13 PCGs concatenated nucleotide sequences of 48 mitogenomes. Maximum likelihood and Bayesian inference analysis placed Ps. albipes and Ps. ferox in the Janthinosoma group, like the accepted classification of Psorophora genus. Ae. fluviatilis was placed in the Aedini tribe, but was revealed to be more related to the Haemagogus genus, a result that may have been hampered by the poor sampling of Aedes sequences. Cq. nigricans clustered with Cq. chrysonotum, both related to Mansonia. Ae. squamipennis was placed as the most external lineage of the Culicinae subfamily. The yielded topology supports the concept of monophyly of all groups and ratifies the current taxonomic classification.
Collapse
Affiliation(s)
- Bruna Laís Sena do Nascimento
- Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, Evandro Chagas Institute—IEC/SVS/MS, Belém 67030-000, Brazil; (B.L.S.d.N.); (F.S.d.S.); (D.B.d.A.M.); (A.C.R.C.); (S.P.d.S.); (H.A.d.O.M.); (D.B.R.V.); (J.W.R.J.); (R.C.F.B.); (J.O.C.); (L.C.M.)
- Biological and Health Sciences Center, Parasitary Biology in the Amazon Posgraduation Program, State of Pará University, Belém 66095-662, Brazil; (L.H.d.S.e.S.); (D.D.D.); (P.F.d.C.V.)
| | - Fábio Silva da Silva
- Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, Evandro Chagas Institute—IEC/SVS/MS, Belém 67030-000, Brazil; (B.L.S.d.N.); (F.S.d.S.); (D.B.d.A.M.); (A.C.R.C.); (S.P.d.S.); (H.A.d.O.M.); (D.B.R.V.); (J.W.R.J.); (R.C.F.B.); (J.O.C.); (L.C.M.)
- Biological and Health Sciences Center, Parasitary Biology in the Amazon Posgraduation Program, State of Pará University, Belém 66095-662, Brazil; (L.H.d.S.e.S.); (D.D.D.); (P.F.d.C.V.)
| | - Joaquim Pinto Nunes-Neto
- Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, Evandro Chagas Institute—IEC/SVS/MS, Belém 67030-000, Brazil; (B.L.S.d.N.); (F.S.d.S.); (D.B.d.A.M.); (A.C.R.C.); (S.P.d.S.); (H.A.d.O.M.); (D.B.R.V.); (J.W.R.J.); (R.C.F.B.); (J.O.C.); (L.C.M.)
- Biological and Health Sciences Center, Parasitary Biology in the Amazon Posgraduation Program, State of Pará University, Belém 66095-662, Brazil; (L.H.d.S.e.S.); (D.D.D.); (P.F.d.C.V.)
- Correspondence:
| | - Daniele Barbosa de Almeida Medeiros
- Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, Evandro Chagas Institute—IEC/SVS/MS, Belém 67030-000, Brazil; (B.L.S.d.N.); (F.S.d.S.); (D.B.d.A.M.); (A.C.R.C.); (S.P.d.S.); (H.A.d.O.M.); (D.B.R.V.); (J.W.R.J.); (R.C.F.B.); (J.O.C.); (L.C.M.)
| | - Ana Cecília Ribeiro Cruz
- Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, Evandro Chagas Institute—IEC/SVS/MS, Belém 67030-000, Brazil; (B.L.S.d.N.); (F.S.d.S.); (D.B.d.A.M.); (A.C.R.C.); (S.P.d.S.); (H.A.d.O.M.); (D.B.R.V.); (J.W.R.J.); (R.C.F.B.); (J.O.C.); (L.C.M.)
| | - Sandro Patroca da Silva
- Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, Evandro Chagas Institute—IEC/SVS/MS, Belém 67030-000, Brazil; (B.L.S.d.N.); (F.S.d.S.); (D.B.d.A.M.); (A.C.R.C.); (S.P.d.S.); (H.A.d.O.M.); (D.B.R.V.); (J.W.R.J.); (R.C.F.B.); (J.O.C.); (L.C.M.)
| | - Lucas Henrique da Silva e Silva
- Biological and Health Sciences Center, Parasitary Biology in the Amazon Posgraduation Program, State of Pará University, Belém 66095-662, Brazil; (L.H.d.S.e.S.); (D.D.D.); (P.F.d.C.V.)
| | - Hamilton Antônio de Oliveira Monteiro
- Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, Evandro Chagas Institute—IEC/SVS/MS, Belém 67030-000, Brazil; (B.L.S.d.N.); (F.S.d.S.); (D.B.d.A.M.); (A.C.R.C.); (S.P.d.S.); (H.A.d.O.M.); (D.B.R.V.); (J.W.R.J.); (R.C.F.B.); (J.O.C.); (L.C.M.)
| | - Daniel Damous Dias
- Biological and Health Sciences Center, Parasitary Biology in the Amazon Posgraduation Program, State of Pará University, Belém 66095-662, Brazil; (L.H.d.S.e.S.); (D.D.D.); (P.F.d.C.V.)
| | - Durval Bertram Rodrigues Vieira
- Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, Evandro Chagas Institute—IEC/SVS/MS, Belém 67030-000, Brazil; (B.L.S.d.N.); (F.S.d.S.); (D.B.d.A.M.); (A.C.R.C.); (S.P.d.S.); (H.A.d.O.M.); (D.B.R.V.); (J.W.R.J.); (R.C.F.B.); (J.O.C.); (L.C.M.)
| | - José Wilson Rosa
- Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, Evandro Chagas Institute—IEC/SVS/MS, Belém 67030-000, Brazil; (B.L.S.d.N.); (F.S.d.S.); (D.B.d.A.M.); (A.C.R.C.); (S.P.d.S.); (H.A.d.O.M.); (D.B.R.V.); (J.W.R.J.); (R.C.F.B.); (J.O.C.); (L.C.M.)
| | - Roberto Carlos Feitosa Brandão
- Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, Evandro Chagas Institute—IEC/SVS/MS, Belém 67030-000, Brazil; (B.L.S.d.N.); (F.S.d.S.); (D.B.d.A.M.); (A.C.R.C.); (S.P.d.S.); (H.A.d.O.M.); (D.B.R.V.); (J.W.R.J.); (R.C.F.B.); (J.O.C.); (L.C.M.)
| | - Jannifer Oliveira Chiang
- Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, Evandro Chagas Institute—IEC/SVS/MS, Belém 67030-000, Brazil; (B.L.S.d.N.); (F.S.d.S.); (D.B.d.A.M.); (A.C.R.C.); (S.P.d.S.); (H.A.d.O.M.); (D.B.R.V.); (J.W.R.J.); (R.C.F.B.); (J.O.C.); (L.C.M.)
| | - Livia Carício Martins
- Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, Evandro Chagas Institute—IEC/SVS/MS, Belém 67030-000, Brazil; (B.L.S.d.N.); (F.S.d.S.); (D.B.d.A.M.); (A.C.R.C.); (S.P.d.S.); (H.A.d.O.M.); (D.B.R.V.); (J.W.R.J.); (R.C.F.B.); (J.O.C.); (L.C.M.)
| | - Pedro Fernando da Costa Vasconcelos
- Biological and Health Sciences Center, Parasitary Biology in the Amazon Posgraduation Program, State of Pará University, Belém 66095-662, Brazil; (L.H.d.S.e.S.); (D.D.D.); (P.F.d.C.V.)
| |
Collapse
|
10
|
Abramson NI, Bodrov SY, Bondareva OV, Genelt-Yanovskiy EA, Petrova TV. A mitochondrial genome phylogeny of voles and lemmings (Rodentia: Arvicolinae): Evolutionary and taxonomic implications. PLoS One 2021; 16:e0248198. [PMID: 34797834 PMCID: PMC8604340 DOI: 10.1371/journal.pone.0248198] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 11/03/2021] [Indexed: 01/04/2023] Open
Abstract
Arvicolinae is one of the most impressive placental radiations with over 150 extant and numerous extinct species that emerged since the Miocene in the Northern Hemisphere. The phylogeny of Arvicolinae has been studied intensively for several decades using morphological and genetic methods. Here, we sequenced 30 new mitochondrial genomes to better understand the evolutionary relationships among the major tribes and genera within the subfamily. The phylogenetic and molecular dating analyses based on 11,391 bp concatenated alignment of protein-coding mitochondrial genes confirmed the monophyly of the subfamily. While Bayesian analysis provided a high resolution across the entire tree, Maximum Likelihood tree reconstruction showed weak support for the ordering of divergence and interrelationships of tribal level taxa within the most ancient radiation. Both the interrelationships among tribes Lagurini, Ellobiusini and Arvicolini, comprising the largest radiation and the position of the genus Dinaromys within it also remained unresolved. For the first time complex relationships between genus level taxa within the species-rich tribe Arvicolini received full resolution. Particularly Lemmiscus was robustly placed as sister to the snow voles Chionomys in the tribe Arvicolini in contrast with a long-held belief of its affinity with Lagurini. Molecular dating of the origin of Arvicolinae and early divergences obtained from the mitogenome data were consistent with fossil records. The mtDNA estimates for putative ancestors of the most genera within Arvicolini appeared to be much older than it was previously proposed in paleontological studies.
Collapse
Affiliation(s)
- Natalia I. Abramson
- Department of Molecular Systematics, Laboratory of Theriology, Zoological Institute RAS, Saint Petersburg, Russia
| | - Semyon Yu. Bodrov
- Department of Molecular Systematics, Laboratory of Theriology, Zoological Institute RAS, Saint Petersburg, Russia
| | - Olga V. Bondareva
- Department of Molecular Systematics, Laboratory of Theriology, Zoological Institute RAS, Saint Petersburg, Russia
| | - Evgeny A. Genelt-Yanovskiy
- Department of Molecular Systematics, Laboratory of Theriology, Zoological Institute RAS, Saint Petersburg, Russia
| | - Tatyana V. Petrova
- Department of Molecular Systematics, Laboratory of Theriology, Zoological Institute RAS, Saint Petersburg, Russia
| |
Collapse
|
11
|
Thummadi NB, Charutha S, Pal M, Manimaran P. Multifractal and cross-correlation analysis on mitochondrial genome sequences using chaos game representation. Mitochondrion 2021; 60:121-128. [PMID: 34375735 DOI: 10.1016/j.mito.2021.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/25/2022]
Abstract
We characterized the multifractality and power-law cross-correlation of mitochondrial genomes of various species through the recently developed method which combines the chaos game representation theory and 2D-multifractal detrended cross-correlation analysis. In the present paper, we analyzed 32 mitochondrial genomes of different species and the obtained results show that all the analyzed data exhibit multifractal nature and power-law cross-correlation behaviour. Further, we performed a cluster analysis from the calculated scaling exponents to identify the class affiliation and its outcome is represented as a dendrogram. We suggest that this integrative approach may help the researchers to understand the phylogeny of any kingdom with their varying genome lengths and also this approach may find applications in characterizing the protein sequences, mRNA sequences, next-generation sequencing, and drug development, etc.
Collapse
Affiliation(s)
- N B Thummadi
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, India
| | - S Charutha
- School of Physics, University of Hyderabad, Gachibowli, Hyderabad 500 046, India
| | - Mayukha Pal
- ABB Ability Innovation Centre, Asea Brown Boveri Company, Hyderabad 500084, India
| | - P Manimaran
- School of Physics, University of Hyderabad, Gachibowli, Hyderabad 500 046, India.
| |
Collapse
|