1
|
Komane P, Kumar P, Choonara Y. Functionalised Carbon Nanotubes: Promising Drug Delivery Vehicles for Neurovascular Disorder Intervention. AAPS PharmSciTech 2023; 24:201. [PMID: 37783896 DOI: 10.1208/s12249-023-02651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023] Open
Abstract
Neurovascular diseases are linked to the brain's blood vessels. These disorders are complicated to treat due to the strict selective characteristics of the blood-brain barrier. Consequently, the potency of the pharmacological treatments for these conditions is immensely diminished, leading to a rise in neurovascular-associated morbidity and mortality. Carbon nanotubes are regarded as essential nanoparticles with a promise of treating neurovascular disorders. Current findings have demonstrated the effectiveness of carbon nanotubes as vehicles for ferrying drugs to the site of interest. This review accentuates the theoretical utilisation of carbon nanotubes as drug nanocarriers equipped with the penetrating capability to the blood-brain barrier for treating neurovascular disorders such as ischemic stroke. The success of the carbon nanotube system may result in the development of a new and highly relevant drug delivery procedure. This review will also cover carbon nanotube functionalisation for applications in the biomedical fields, toxicity, in vitro and in vivo drugs and biomolecule delivery, and the future outlook of carbon nanotubes.
Collapse
Affiliation(s)
- Patrick Komane
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg, 2193, Parktown, South Africa
| | - Yahya Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg, 2193, Parktown, South Africa
| |
Collapse
|
2
|
Rosini E, Boreggio M, Verga M, Caldinelli L, Pollegioni L, Fasoli E. The D-amino acid oxidase-carbon nanotubes: evaluation of cytotoxicity and biocompatibility of a potential anticancer nanosystem. 3 Biotech 2023; 13:243. [PMID: 37346390 PMCID: PMC10279611 DOI: 10.1007/s13205-023-03568-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/19/2023] [Indexed: 06/23/2023] Open
Abstract
The 'enzyme prodrug therapy' represents a promising strategy to overcome limitations of current cancer treatments by the systemic administration of prodrugs, converted by a foreign enzyme into an active anticancer compound directly in tumor sites. One example is D-amino acid oxidase (DAAO), a dimeric flavoenzyme able to catalyze the oxidative deamination of D-amino acids with production of hydrogen peroxide, a reactive oxygen species (ROS), able to favor cancer cells death. A DAAO variant containing five aminoacidic substitutions (mDAAO) was demonstrated to possess a better therapeutic efficacy under low O2 concentration than wild-type DAAO (wtDAAO). Recently, aiming to design promising nanocarriers for DAAO, multi-walled carbon nanotubes (MWCNTs) were functionalized with polyethylene glycol (PEG) to reduce their tendency to aggregation and to improve their biocompatibility. Here, wtDAAO and mDAAO were adsorbed on PEGylated MWCNTs and their activity and cytotoxicity were tested. While PEG-MWCNTs-DAAOs have shown a higher activity than pristine MWCNTs-DAAO (independently on the DAAO variant used), PEG-MWCNTs-mDAAO showed a higher cytotoxicity than PEG-MWCNTs-wtDAAO at low O2 concentration. In order to evaluate the nanocarriers' biocompatibility, PEG-MWCNTs-DAAOs were incubated in human serum and the composition of protein corona was investigated via nLC-MS/MS, aiming to characterize both soft and hard coronas. The mDAAO variant has influenced the bio-corona composition in both number of proteins and presence of opsonins and dysopsonins: notably, the soft corona of PEG-MWCNTs-mDAAO contained less proteins and was more enriched in proteins able to inhibit the immune response than PEG-MWCNTs-wtDAAO. Considering the obtained results, the PEGylated MWCNTs conjugated with the mDAAO variant seems a promising candidate for a selective antitumor oxidative therapy: under anoxic-like conditions, this novel drug delivery system showed a remarkable cytotoxic effect controlled by the substrate addition, against different tumor cell lines, and a bio-corona composition devoted to prolong its blood circulation time, thus improving the drug's biodistribution. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03568-1.
Collapse
Affiliation(s)
- Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Marta Boreggio
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Matteo Verga
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Laura Caldinelli
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| |
Collapse
|
3
|
Cytotoxicity Analysis for the Hydroxyl Functionalized MWCNT Reinforced PMMA Nanocomposites in Oral Squamous Carcinoma (KB) Cells. Polymers (Basel) 2023; 15:polym15051192. [PMID: 36904431 PMCID: PMC10007141 DOI: 10.3390/polym15051192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/19/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
In this particular research study, a unique three-dimensional mixing technique was used to incorporate multi-walled carbon nanotubes (MWCNTs) into polymethyl methacrylate (PMMA), and the KB cell line was used in the analysis of cytotoxicity, apoptosis detection, and cell viability using the MTT assay protocol. At low concentrations (0.001 to 0.1 g/mL), these results showed that the CNT did not seem to cause cell death or apoptosis directly. It increased lymphocyte-mediated cytotoxicity against KB cell lines. This was demonstrated by the fact that the CNT increased the time it took for KB cell lines to die. In the end, the unique three-dimensional mixing method solves problems such as clumping and uneven mixing that have been written about in the relevant literature. Phagocytic uptake of MWCNT-reinforced PMMA nanocomposite by KB cells leads to oxidative stress and apoptosis induction in a dose-dependent manner. The cytotoxicity of the generated composite and the ROS (reactive oxygen species) it produces may be controlled by adjusting the MWCNT loading. The conclusion that can be drawn from the studies to date is that it could be possible to treat some types of cancer using PMMA that has MWCNTs incorporated into it.
Collapse
|
4
|
Sun L, Chen X, Chen R, Ji Z, Mu H, Liu C, Yu J, Wang J, Xia R, Zhang S, Xu Y, Ma K, Xia L. Balancing the antibacterial and osteogenic effects of double-layer TiO 2 nanotubes loaded with silver nanoparticles for the osseointegration of implants. NANOSCALE 2023; 15:2911-2923. [PMID: 36692007 DOI: 10.1039/d2nr06154f] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The improvement of Ag nanoparticles (AgNPs), in particular, loaded titania nanotubes, includes not only the antibacterial effect but also balancing the side effects from the antibacterial effect and osteogenesis properties, which can lead to an increased success rate of implants. Herein, based on the various needs of the graft to inhibit bacteria at different stages in vivo, we used a special osteogenic honeycomb-like "large tube over small tube" double-layered nanotube structure and created ultra-small-sized silver nanoparticles uniformly loaded on the surface and the interior of double-layer nanotubes by an optimized sputter coating method to ensure the time-dependent controllable release of antibacterial Ag ions from grafts and achieve the balance of the antibacterial effect and osteogenesis properties. The release of Ag+ from DNT-Ag8 was determined by inductively coupled plasma spectrometry. The release rate of Ag was slow; it was 30% on the first day and plateaued by the 19th day. Porphyromonas gingivalis adhesion and live bacteria were less abundant on the surface of DNT-Ag8, reaching an antibacterial efficiency of 55.6% in vitro. DNT-Ag8 shows a significantly higher antibacterial effect in a rat model infected with Staphylococcus aureus. An in vitro study demonstrated that DNT-Ag8 had no adverse effects on the adhesion, viability, proliferation, ALP staining, or activity assays of rat BMSCs. In contrast, it increased the expression of osteogenic genes. In vivo, DNT-Ag8 promoted bone-implant osseointegration in a beagle mandibular tooth loss model. This study demonstrated that the uniform loading of small-diameter silver nanoparticles using a honeycomb bilayer nanotube template structure is a promising method for modifying titanium surfaces to improve both bacteriostasis and osseointegration.
Collapse
Affiliation(s)
- Lei Sun
- Department of Stomatology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Xuzhuo Chen
- Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Ruiguo Chen
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.
| | - Zhibo Ji
- Department of Stomatology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Haizhang Mu
- Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Chun Liu
- Department of Stomatology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jinlan Yu
- Department of Stomatology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jiarong Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.
| | - Rong Xia
- Department of Stomatology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shanyong Zhang
- Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Yin Xu
- Laboratory of Molecular Neuropsychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China.
| | - Kun Ma
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.
| | - Lunguo Xia
- Department of Orthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Carboxyl Functionalization of N-MWCNTs with Stone-Wales Defects and Possibility of HIF-1α Wave-Diffusive Delivery. Int J Mol Sci 2023; 24:ijms24021296. [PMID: 36674808 PMCID: PMC9866222 DOI: 10.3390/ijms24021296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Nitrogen-doped multi-walled carbon nanotubes (N-MWCNTs) are widely used for drug delivery. One of the main challenges is to clarify their interaction with hypoxia-inducible factor 1 alpha (HIF-1α), the lack of which leads to oncological and cardiovascular diseases. In the presented study, N-MWCNTs were synthesized by catalytic chemical vapor deposition and irradiated with argon ions. Their chemical state, local structure, interfaces, Stone-Wales defects, and doping with nitrogen were analyzed by high resolution transmission electron microscopy (HRTEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Using experimental data, supercells of functionalized N-MWCNTs with an oxygen content of 2.7, 4 and 6 at. % in carboxyl groups were built by quantum chemical methods. Our analysis by the self-consistent charge density functional tight-binding (SCC DFTB) method shows that a key role in the functionalization of CNTs with carboxyl groups belongs to Stone-Wales defects. The results of research in the decoration of CNTs with HIF-1α demonstrate the possibility of wave-diffusion drug delivery. The nature of hybridization and relaxation determines the mechanism of oxygen regulation with HIF-1α molecules, namely, by OH-(OH-C) and OH-(O=C) chemical bonds. The concentration dependence of drug release in the diffusion mode suggests that the best pattern for drug delivery is provided by the tube with a carboxylic oxygen content of 6 at. %.
Collapse
|
6
|
Sultana A, Zare M, Thomas V, Kumar TS, Ramakrishna S. Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
7
|
Maluin FN, Katas H. Chitosan functionalization of metal- and carbon-based nanomaterials as an approach toward sustainability tomorrow. Nanotoxicology 2022; 16:425-449. [PMID: 35867661 DOI: 10.1080/17435390.2022.2090025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The growing number of nanomaterials-based-products ranging from agriculture to cosmetics to medical, and so on, increases the amount of exposure, compelling researchers to include safety and health protocols in each developed nano-product to ensure consumer safety. As a result, emphasizing the importance of novel nanomaterials' toxicological and safety profiles, as well as their product quality enhancement, is critical. As a result, research efforts must be directed toward developing new nanomaterials in a safer-by-design manner. Chitosan functionalization is an excellent option for this because it is already known for its nontoxicity, biodegradability, and biocompatibility. In this review, we hope to uncover the toxicological consequences of nanomaterials and the potential role of chitosan functionalization in mitigating them. This is an effort to create an environmentally friendly and safe nano-product, ensuring tomorrow's sustainability.
Collapse
Affiliation(s)
- Farhatun Najat Maluin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,School of Chemical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Haliza Katas
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Hasanpour Galehban M, Zeynizadeh B, Mousavi H. Ni II NPs entrapped within a matrix of l-glutamic acid cross-linked chitosan supported on magnetic carboxylic acid-functionalized multi-walled carbon nanotube: a new and efficient multi-task catalytic system for the green one-pot synthesis of diverse heterocyclic frameworks. RSC Adv 2022; 12:16454-16478. [PMID: 35754864 PMCID: PMC9171750 DOI: 10.1039/d1ra08454b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/20/2022] [Indexed: 12/19/2022] Open
Abstract
In the present study, a new l-glutamic acid cross-linked chitosan supported on magnetic carboxylic acid-functionalized multi-walled carbon nanotube (Fe3O4/f-MWCNT-CS-Glu) nanocomposite was prepared through a convenient one-pot multi-component sequential strategy. Then, nickelII nanoparticles (NiII NPs) were entrapped within a matrix of the mentioned nanocomposite. Afterward, the structure of the as-prepared Fe3O4/f-MWCNT-CS-Glu/NiII nanosystem was elucidated by various techniques, including FT-IR, PXRD, SEM, TEM, SEM-based EDX and elemental mapping, ICP-OES, TGA/DTA, and VSM. In the next part of this research, the catalytic applications of the mentioned nickelII-containing magnetic nanocomposite were assessed upon green one-pot synthesis of diverse heterocyclic frameworks, including bis-coumarins (3a-n), 2-aryl(or heteroaryl)-2,3-dihydroquinazolin-4(1H)-ones (5a-r), 9-aryl-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-diones (7a-n), and 2-amino-4-aryl-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitriles (9a-n). The good-to-excellent yields of the desired products, satisfactory reaction rates, use of water solvent or solvent-free reaction medium, acceptable turnover numbers (TONs) and turnover frequencies (TOFs), along with comfortable recoverability and satisfying reusability of the as-prepared nanocatalyst for at least eight successive runs, and also easy work-up and purification procedures are some of the advantages of the current synthetic protocols.
Collapse
Affiliation(s)
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| |
Collapse
|
9
|
Azarnier SG, Esmkhani M, Dolatkhah Z, Javanshir S. Collagen-coated superparamagnetic iron oxide nanoparticles as a sustainable catalyst for spirooxindole synthesis. Sci Rep 2022; 12:6104. [PMID: 35414646 PMCID: PMC9005729 DOI: 10.1038/s41598-022-10102-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 02/24/2022] [Indexed: 12/31/2022] Open
Abstract
In this work, a novel magnetic organic–inorganic hybrid catalyst was fabricated by encapsulating magnetite@silica (Fe3O4@SiO2) nanoparticles with Isinglass protein collagen (IGPC) using epichlorohydrin (ECH) as a crosslinking agent. Characterization studies of the prepared particles were accomplished by various analytical techniques specifically, Fourier transform infrared (FTIR) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), energy-dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), and Brunauer−Emmett−Teller (BET) analysis. The XRD results showed a crystalline and amorphous phase which contribute to magnetite and isinglass respectively. Moreover, the formation of the core/shell structure had been confirmed by TEM images. The synthesized Fe3O4@SiO2/ECH/IG was applied as a bifunctional heterogeneous catalyst in the synthesis of spirooxindole derivatives through the multicomponent reaction of isatin, malononitrile, and C-H acids which demonstrated its excellent catalytic properties. The advantages of this green approach were low catalyst loading, short reaction time, stability, and recyclability for at least four runs.
Collapse
Affiliation(s)
- Shima Ghanbari Azarnier
- Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Maryam Esmkhani
- Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Zahra Dolatkhah
- Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Shahrzad Javanshir
- Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran.
| |
Collapse
|
10
|
Hyper-branched multifunctional carbon nanotubes carrier for targeted liver cancer therapy. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|