1
|
Osakabe H, Suzuki M, Shimizu T, Minoda H. Effect of the surrounding environment on electron beam irradiation damage of enhanced green fluorescent protein. Ultramicroscopy 2025; 268:114082. [PMID: 39615243 DOI: 10.1016/j.ultramic.2024.114082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/22/2024] [Accepted: 11/24/2024] [Indexed: 12/16/2024]
Abstract
Fluorescent proteins exhibit fluorescence and photoconversion, which are used to study biological phenomena. Among these, enhanced green fluorescent protein (EGFP) emits cathodoluminescence when irradiated with electron beams; this phenomenon has numerous applications in new research tools for biological phenomena. However, bleaching during electron irradiation is a major problem. Generally, the presence of water is important for biological samples, and structural observations are often performed under cryogenic conditions. One of the advantages of cryogenic conditions is the stabilization of the sample due to cooling. However, it is unclear which factor is more effective: the presence of water molecules or cryogenic preservation. To explore the stabilizing factors of the sample structure, we prepared four environments around the sample-dry at room temperature, wet at room temperature, dry at low temperature, and under cryogenic conditions-and investigated the electron beam irradiation damage by measuring the fluorescence emission spectra. Emission intensity from EGFP was attenuated, and the peak was red-shifted by electron beam irradiation; however, the intensity attenuation was fast under dry conditions at low temperature and slow under wet conditions at room temperature. These results imply that sample cooling has no significant effect on the stability of the EGFP chromophore and that the presence of water molecules is extremely important.
Collapse
Affiliation(s)
- Haruyoshi Osakabe
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Mihiro Suzuki
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Toshiki Shimizu
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan; Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Hiroki Minoda
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan; Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
2
|
Cathodoluminescence imaging of cellular structures labeled with luminescent iridium or rhenium complexes at cryogenic temperatures. Sci Rep 2022; 12:13432. [PMID: 35927332 PMCID: PMC9352783 DOI: 10.1038/s41598-022-17723-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/29/2022] [Indexed: 11/08/2022] Open
Abstract
We report for the first time the use of two live-cell imaging agents from the group of luminescent transition metal complexes (IRAZOLVE-MITO and REZOLVE-ER) as cathodoluminescent probes. This first experimental demonstration shows the application of both probes for the identification of cellular structures at the nanoscale and near the native state directly in the cryo-scanning electron microscope. This approach can potentially be applied to correlative and multimodal approaches and used to target specific regions within vitrified samples at low electron beam energies.
Collapse
|
3
|
Srinivasa Raja A, de Boer P, Giepmans BNG, Hoogenboom JP. Electron-Beam Induced Luminescence and Bleaching in Polymer Resins and Embedded Biomaterial. Macromol Biosci 2021; 21:e2100192. [PMID: 34480515 DOI: 10.1002/mabi.202100192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/16/2021] [Indexed: 11/11/2022]
Abstract
Electron microscopy is crucial for imaging biological ultrastructure at nanometer resolution. However, electron irradiation also causes specimen damage, reflected in structural and chemical changes that can give rise to alternative signals. Here, luminescence induced by electron-beam irradiation is reported across a range of materials widely used in biological electron microscopy. Electron-induced luminescence is spectrally characterized in two epoxy (Epon, Durcupan) and one methacrylate resin (HM20) over a broad electron fluence range, from 10-4 to 103 mC cm-2 , both with and without embedded biological samples. Electron-induced luminescence is pervasive in polymer resins, embedded biomaterial, and occurs even in fixed, whole cells in the absence of resin. Across media, similar patterns of intensity rise, spectral red-shifting, and bleaching upon increasing electron fluence are observed. Increased landing energies cause reduced scattering in the specimen shifting the luminescence profiles to higher fluences. Predictable and tunable electron-induced luminescence in natural and synthetic polymer media is advantageous for turning many polymers into luminescent nanostructures or to fluorescently visualize (micro)plastics. Furthermore, these findings provide perspective to direct electron-beam excitation approaches like cathodoluminescence that may be obscured by these nonspecific electron-induced signals.
Collapse
Affiliation(s)
- Aditi Srinivasa Raja
- Department of Imaging Physics, Delft University of Technology, Delft, 2628 CJ, The Netherlands
| | - Pascal de Boer
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, The Netherlands
| | - Ben N G Giepmans
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, The Netherlands
| | - Jacob P Hoogenboom
- Department of Imaging Physics, Delft University of Technology, Delft, 2628 CJ, The Netherlands
| |
Collapse
|
4
|
Ikegami H, Akiba K, Minoda H. Evaluation of electron radiation damage to green fluorescent protein. Ultramicroscopy 2021; 225:113272. [PMID: 33932732 DOI: 10.1016/j.ultramic.2021.113272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/25/2021] [Accepted: 04/02/2021] [Indexed: 12/01/2022]
Abstract
Green fluorescent protein (GFP) emits light when irradiated by not only light but also electrons. This electron-induced light emission called cathodoluminescence (CL) can be used to realize a high-resolution light emission microscopy based on the irradiation of a very narrow electron beam. To implement CL mapping in life sciences the investigation of the damage resistance of GFP to electron irradiation needs to be clarified. In this study, we investigated the electron radiation damage to GFP by analyzing the change in the CL intensity during electron beam irradiation. Since some of the CL spectra changed in shape during electron irradiation, the change in the intensity between 585 and 605 nm were measured. The characteristic doses at different electron current densities and electron energies were investigated. The characteristic dose of EGFP is much larger than that of coronene, which is one of the stable organic molecules against the electron beam irradiation.
Collapse
Affiliation(s)
- H Ikegami
- Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan
| | - K Akiba
- Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan
| | - H Minoda
- Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|