1
|
Del Arco J, Acosta J, Fernández-Lucas J. Biotechnological applications of purine and pyrimidine deaminases. Biotechnol Adv 2024; 77:108473. [PMID: 39505057 DOI: 10.1016/j.biotechadv.2024.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/21/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
Deaminases, ubiquitous enzymes found in all living organisms from bacteria to humans, serve diverse and crucial functions. Notably, purine and pyrimidine deaminases, while biologically essential for regulating nucleotide pools, exhibit exceptional versatility in biotechnology. This review systematically consolidates current knowledge on deaminases, showcasing their potential uses and relevance in the field of biotechnology. Thus, their transformative impact on pharmaceutical manufacturing is highlighted as catalysts for the synthesis of nucleic acid derivatives. Additionally, the role of deaminases in food bioprocessing and production is also explored, particularly in purine content reduction and caffeine production, showcasing their versatility in this field. The review also delves into most promising biomedical applications including deaminase-based GDEPT and genome and transcriptome editing by deaminase-based systems. All in all, illustrated with practical examples, we underscore the role of purine and pyrimidine deaminases in advancing sustainable and efficient biotechnological practices. Finally, the review highlights future challenges and prospects in deaminase-based biotechnological processes, encompassing both industrial and medical perspectives.
Collapse
Affiliation(s)
- Jon Del Arco
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Javier Acosta
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia; Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
2
|
Karagianni K, Bibi A, Madé A, Acharya S, Parkkonen M, Barbalata T, Srivastava PK, de Gonzalo-Calvo D, Emanueli C, Martelli F, Devaux Y, Dafou D, Nossent AY. Recommendations for detection, validation, and evaluation of RNA editing events in cardiovascular and neurological/neurodegenerative diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102085. [PMID: 38192612 PMCID: PMC10772297 DOI: 10.1016/j.omtn.2023.102085] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
RNA editing, a common and potentially highly functional form of RNA modification, encompasses two different RNA modifications, namely adenosine to inosine (A-to-I) and cytidine to uridine (C-to-U) editing. As inosines are interpreted as guanosines by the cellular machinery, both A-to-I and C-to-U editing change the nucleotide sequence of the RNA. Editing events in coding sequences have the potential to change the amino acid sequence of proteins, whereas editing events in noncoding RNAs can, for example, affect microRNA target binding. With advancing RNA sequencing technology, more RNA editing events are being discovered, studied, and reported. However, RNA editing events are still often overlooked or discarded as sequence read quality defects. With this position paper, we aim to provide guidelines and recommendations for the detection, validation, and follow-up experiments to study RNA editing, taking examples from the fields of cardiovascular and brain disease. We discuss all steps, from sample collection, storage, and preparation, to different strategies for RNA sequencing and editing-sensitive data analysis strategies, to validation and follow-up experiments, as well as potential pitfalls and gaps in the available technologies. This paper may be used as an experimental guideline for RNA editing studies in any disease context.
Collapse
Affiliation(s)
- Korina Karagianni
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Alessia Bibi
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097 Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Alisia Madé
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097 Milan, Italy
| | - Shubhra Acharya
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-alzette, Luxembourg
| | - Mikko Parkkonen
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Teodora Barbalata
- Lipidomics Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8, B. P. Hasdeu Street, 050568 Bucharest, Romania
| | | | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | | | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097 Milan, Italy
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Dimitra Dafou
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - A. Yaël Nossent
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - on behalf of EU-CardioRNA COST Action CA17129
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097 Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-alzette, Luxembourg
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Lipidomics Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8, B. P. Hasdeu Street, 050568 Bucharest, Romania
- National Heart & Lung Institute, Imperial College London, London, UK
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Song J, Zhuang Y, Yi C. Programmable RNA base editing via targeted modifications. Nat Chem Biol 2024; 20:277-290. [PMID: 38418907 DOI: 10.1038/s41589-023-01531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/18/2023] [Indexed: 03/02/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editors are powerful tools in biology and hold great promise for the treatment of human diseases. Advanced DNA base editing tools, such as cytosine base editor and adenine base editor, have been developed to correct permanent mistakes in genetic material. However, undesired off-target edits would also be permanent, which poses a considerable risk for therapeutics. Alternatively, base editing at the RNA level is capable of correcting disease-causing mutations but does not lead to lasting genotoxic effects. RNA base editors offer temporary and reversible therapies and have been catching on in recent years. Here, we summarize some emerging RNA editors based on A-to-inosine, C-to-U and U-to-pseudouridine changes. We review the programmable RNA-targeting systems as well as modification enzyme-based effector proteins and highlight recent technological breakthroughs. Finally, we compare editing tools, discuss limitations and opportunities, and provide insights for the future directions of RNA base editing.
Collapse
Affiliation(s)
- Jinghui Song
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Yuan Zhuang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, People's Republic of China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, People's Republic of China.
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China.
| |
Collapse
|
4
|
Li J, Fan G, Sakari M, Tsukahara T. Improvement of C-to-U RNA editing using an artificial MS2-APOBEC system. Biotechnol J 2024; 19:e2300321. [PMID: 38010373 DOI: 10.1002/biot.202300321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
RNA cytidine deamination (C-to-U editing) has been achieved using the MS2-apolipoprotein B-editing catalytic polypeptide-like (APOBEC)1 editing system. Here, we fused the cytidine deaminase (CDA) enzymes APOBEC3A and APOBEC3G with the MS2 system and examined their RNA editing efficiencies in transfected HEK 293T cells. Given the single-stranded RNA preferences of APOBEC3A and APOBEC3G, we designed unconventional guide RNAs that induced a loop at the target sequence, allowing the target to form a single-stranded structure. Because APOBEC3A and APOBEC3G have different base preferences (5'-TC and 5'-CC, respectively), we introduced the D317W mutation into APOBEC3G to convert its base preference to that of APOBEC3A. Upon co-transfection with a guide RNA that induced the formation of a 14 nt loop on the target sequence, MS2-fused APOBEC3A and APOBEC3G showed high editing efficiency. While the D317W mutation of APOBEC3G led to a slight improvement in editing efficiency, the difference was not statistically significant. These findings indicate that APOBEC3A and APOBEC3G can induce C-to-U RNA editing when transfected with a loop guide RNA. Moreover, the editing efficiency of APOBEC3G can be enhanced by site-specific mutation to alter the base preference. Overall, our results demonstrate that the MS2 system can fuse and catalyze reactions with different enzymes, suggesting that it holds an even greater potential for RNA editing than is utilized currently.
Collapse
Affiliation(s)
- Jiarui Li
- Bioscience, Biotechnology and Biomedical Engineering Research Area, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
| | - Guangyao Fan
- Bioscience, Biotechnology and Biomedical Engineering Research Area, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
- School of Medicine, Shaoxing University, Shaoxing, China
| | - Matomo Sakari
- Bioscience, Biotechnology and Biomedical Engineering Research Area, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
| | - Toshifumi Tsukahara
- Bioscience, Biotechnology and Biomedical Engineering Research Area, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
- GeCoRT Co. Ltd., Nishi-ku, Yokohama, Japan
| |
Collapse
|
5
|
Latifi N, Mack AM, Tellioglu I, Di Giorgio S, Stafforst T. Precise and efficient C-to-U RNA base editing with SNAP-CDAR-S. Nucleic Acids Res 2023; 51:e84. [PMID: 37462074 PMCID: PMC10450179 DOI: 10.1093/nar/gkad598] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/08/2023] [Accepted: 07/05/2023] [Indexed: 08/26/2023] Open
Abstract
Site-directed RNA base editing enables the transient and dosable change of genetic information and represents a recent strategy to manipulate cellular processes, paving ways to novel therapeutic modalities. While tools to introduce adenosine-to-inosine changes have been explored quite intensively, the engineering of precise and programmable tools for cytidine-to-uridine editing is somewhat lacking behind. Here we demonstrate that the cytidine deaminase domain evolved from the ADAR2 adenosine deaminase, taken from the RESCUE-S tool, provides very efficient and highly programmable editing when changing the RNA targeting mechanism from Cas13-based to SNAP-tag-based. Optimization of the guide RNA chemistry further allowed to dramatically improve editing yields in the difficult-to-edit 5'-CCN sequence context thus improving the substrate scope of the tool. Regarding editing efficiency, SNAP-CDAR-S outcompeted the RESCUE-S tool clearly on all tested targets, and was highly superior in perturbing the β-catenin pathway. NGS analysis showed similar, moderate global off-target A-to-I and C-to-U editing for both tools.
Collapse
Affiliation(s)
- Ngadhnjim Latifi
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Aline Maria Mack
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Irem Tellioglu
- Division of Immune Diversity (D150), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Engineering, University of Heidelberg, 69120 Heidelberg, Germany
| | - Salvatore Di Giorgio
- Division of Immune Diversity (D150), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
- Gene and RNA Therapy Center (GRTC), Faculty of Medicine University Tuebingen, Germany
| |
Collapse
|
6
|
Gao Z, Jiang W, Zhang Y, Zhang L, Yi M, Wang H, Ma Z, Qu B, Ji X, Long H, Zhang S. Amphioxus adenosine-to-inosine tRNA-editing enzyme that can perform C-to-U and A-to-I deamination of DNA. Commun Biol 2023; 6:744. [PMID: 37464027 PMCID: PMC10354150 DOI: 10.1038/s42003-023-05134-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
Adenosine-to-inosine tRNA-editing enzyme has been identified for more than two decades, but the study on its DNA editing activity is rather scarce. We show that amphioxus (Branchiostoma japonicum) ADAT2 (BjADAT2) contains the active site 'HxE-PCxxC' and the key residues for target-base-binding, and amphioxus ADAT3 (BjADAT3) harbors both the N-terminal positively charged region and the C-terminal pseudo-catalytic domain important for recognition of substrates. The sequencing of BjADAT2-transformed Escherichia coli genome suggests that BjADAT2 has the potential to target E. coli DNA and can deaminate at TCG and GAA sites in the E. coli genome. Biochemical analyses further demonstrate that BjADAT2, in complex with BjADAT3, can perform A-to-I editing of tRNA and convert C-to-U and A-to-I deamination of DNA. We also show that BjADAT2 preferentially deaminates adenosines and cytidines in the loop of DNA hairpin structures of substrates, and BjADAT3 also affects the type of DNA substrate targeted by BjADAT2. Finally, we find that C89, N113, C148 and Y156 play critical roles in the DNA editing activity of BjADAT2. Collectively, our study indicates that BjADAT2/3 is the sole naturally occurring deaminase with both tRNA and DNA editing capacity identified so far in Metazoa.
Collapse
Affiliation(s)
- Zhan Gao
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 266003, Qingdao, China.
| | - Wanyue Jiang
- Institute of Evolution & Marine Biodiversity, KLMME, Ocean University of China, 266003, Qingdao, China
| | - Yu Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 266003, Qingdao, China
| | - Liping Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 266003, Qingdao, China
| | - Mengmeng Yi
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 266003, Qingdao, China
| | - Haitao Wang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 266003, Qingdao, China
| | - Zengyu Ma
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 266003, Qingdao, China
| | - Baozhen Qu
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 266003, Qingdao, China
| | - Xiaohan Ji
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 266003, Qingdao, China
| | - Hongan Long
- Institute of Evolution & Marine Biodiversity, KLMME, Ocean University of China, 266003, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, 266237, Qingdao, China
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 266003, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, 266237, Qingdao, China.
| |
Collapse
|
7
|
Booth BJ, Nourreddine S, Katrekar D, Savva Y, Bose D, Long TJ, Huss DJ, Mali P. RNA editing: Expanding the potential of RNA therapeutics. Mol Ther 2023; 31:1533-1549. [PMID: 36620962 PMCID: PMC9824937 DOI: 10.1016/j.ymthe.2023.01.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
RNA therapeutics have had a tremendous impact on medicine, recently exemplified by the rapid development and deployment of mRNA vaccines to combat the COVID-19 pandemic. In addition, RNA-targeting drugs have been developed for diseases with significant unmet medical needs through selective mRNA knockdown or modulation of pre-mRNA splicing. Recently, RNA editing, particularly antisense RNA-guided adenosine deaminase acting on RNA (ADAR)-based programmable A-to-I editing, has emerged as a powerful tool to manipulate RNA to enable correction of disease-causing mutations and modulate gene expression and protein function. Beyond correcting pathogenic mutations, the technology is particularly well suited for therapeutic applications that require a transient pharmacodynamic effect, such as the treatment of acute pain, obesity, viral infection, and inflammation, where it would be undesirable to introduce permanent alterations to the genome. Furthermore, transient modulation of protein function, such as altering the active sites of enzymes or the interface of protein-protein interactions, opens the door to therapeutic avenues ranging from regenerative medicine to oncology. These emerging RNA-editing-based toolsets are poised to broadly impact biotechnology and therapeutic applications. Here, we review the emerging field of therapeutic RNA editing, highlight recent laboratory advancements, and discuss the key challenges on the path to clinical development.
Collapse
Affiliation(s)
| | - Sami Nourreddine
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | | | | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Lu D, Lu J, Liu Q, Zhang Q. Emerging role of the RNA-editing enzyme ADAR1 in stem cell fate and function. Biomark Res 2023; 11:61. [PMID: 37280687 DOI: 10.1186/s40364-023-00503-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/13/2023] [Indexed: 06/08/2023] Open
Abstract
Stem cells are critical for organism development and the maintenance of tissue homeostasis. Recent studies focusing on RNA editing have indicated how this mark controls stem cell fate and function in both normal and malignant states. RNA editing is mainly mediated by adenosine deaminase acting on RNA 1 (ADAR1). The RNA editing enzyme ADAR1 converts adenosine in a double-stranded RNA (dsRNA) substrate into inosine. ADAR1 is a multifunctional protein that regulate physiological processes including embryonic development, cell differentiation, and immune regulation, and even apply to the development of gene editing technologies. In this review, we summarize the structure and function of ADAR1 with a focus on how it can mediate distinct functions in stem cell self-renewal and differentiation. Targeting ADAR1 has emerged as a potential novel therapeutic strategy in both normal and dysregulated stem cell contexts.
Collapse
Affiliation(s)
- Di Lu
- The Biotherapy Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jianxi Lu
- The Biotherapy Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Qiuli Liu
- The Biotherapy Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Qi Zhang
- The Biotherapy Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
9
|
Berling E, Nicolle R, Laforêt P, Ronzitti G. Gene therapy review: Duchenne muscular dystrophy case study. Rev Neurol (Paris) 2023; 179:90-105. [PMID: 36517287 DOI: 10.1016/j.neurol.2022.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
Gene therapy, i.e., any therapeutic approach involving the use of genetic material as a drug and more largely altering the transcription or translation of one or more genes, covers a wide range of innovative methods for treating diseases, including neurological disorders. Although they share common principles, the numerous gene therapy approaches differ greatly in their mechanisms of action. They also differ in their maturity for some are already used in clinical practice while others have never been used in humans. The aim of this review is to present the whole range of gene therapy techniques through the example of Duchenne muscular dystrophy (DMD). DMD is a severe myopathy caused by mutations in the dystrophin gene leading to the lack of functional dystrophin protein. It is a disease known to all neurologists and in which almost all gene therapy methods were applied. Here we discuss the mechanisms of gene transfer techniques with or without viral vectors, DNA editing with or without matrix repair and those acting at the RNA level (RNA editing, exon skipping and STOP-codon readthrough). For each method, we present the results obtained in DMD with a particular focus on clinical data. This review aims also to outline the advantages, limitations and risks of gene therapy related to the approach used.
Collapse
Affiliation(s)
- E Berling
- Neurology department, Raymond Poincaré university hospital, AP-HP, Garches, France; Nord-Est-Île-de-France neuromuscular reference center, FHU PHENIX, Garches, France; U 1179 Inserm, université Paris-Saclay, Montigny-Le-Bretonneux, France.
| | - R Nicolle
- Université Paris Cité, Inserm UMR1163, Imagine Institute, Clinical Bioinformatics laboratory, 75015 Paris, France
| | - P Laforêt
- Neurology department, Raymond Poincaré university hospital, AP-HP, Garches, France; Nord-Est-Île-de-France neuromuscular reference center, FHU PHENIX, Garches, France; U 1179 Inserm, université Paris-Saclay, Montigny-Le-Bretonneux, France
| | - G Ronzitti
- Université Paris Cité, Inserm UMR1163, Imagine Institute, Clinical Bioinformatics laboratory, 75015 Paris, France; Genethon, Evry, France
| |
Collapse
|
10
|
C-to-U RNA Editing: A Site Directed RNA Editing Tool for Restoration of Genetic Code. Genes (Basel) 2022; 13:genes13091636. [PMID: 36140804 PMCID: PMC9498875 DOI: 10.3390/genes13091636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
The restoration of genetic code by editing mutated genes is a potential method for the treatment of genetic diseases/disorders. Genetic disorders are caused by the point mutations of thymine (T) to cytidine (C) or guanosine (G) to adenine (A), for which gene editing (editing of mutated genes) is a promising therapeutic technique. In C-to-Uridine (U) RNA editing, it converts the base C-to-U in RNA molecules and leads to nonsynonymous changes when occurring in coding regions; however, for G-to-A mutations, A-to-I editing occurs. Editing of C-to-U is not as physiologically common as that of A-to-I editing. Although hundreds to thousands of coding sites have been found to be C-to-U edited or editable in humans, the biological significance of this phenomenon remains elusive. In this review, we have tried to provide detailed information on physiological and artificial approaches for C-to-U RNA editing.
Collapse
|
11
|
Saifullah, Motohashi N, Tsukahara T, Aoki Y. Development of Therapeutic RNA Manipulation for Muscular Dystrophy. Front Genome Ed 2022; 4:863651. [PMID: 35620642 PMCID: PMC9127466 DOI: 10.3389/fgeed.2022.863651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Approval of therapeutic RNA molecules, including RNA vaccines, has paved the way for next-generation treatment strategies for various diseases. Oligonucleotide-based therapeutics hold particular promise for treating incurable muscular dystrophies, including Duchenne muscular dystrophy (DMD). DMD is a severe monogenic disease triggered by deletions, duplications, or point mutations in the DMD gene, which encodes a membrane-linked cytoskeletal protein to protect muscle fibers from contraction-induced injury. Patients with DMD inevitably succumb to muscle degeneration and atrophy early in life, leading to premature death from cardiac and respiratory failure. Thus far, the disease has thwarted all curative strategies. Transcriptomic manipulation, employing exon skipping using antisense oligonucleotides (ASO), has made significant progress in the search for DMD therapeutics. Several exon-skipping drugs employing RNA manipulation technology have been approved by regulatory agencies and have shown promise in clinical trials. This review summarizes recent scientific and clinical progress of ASO and other novel RNA manipulations, including RNA-based editing using MS2 coat protein-conjugated adenosine deaminase acting on the RNA (MCP-ADAR) system illustrating the efficacy and limitations of therapies to restore dystrophin. Perhaps lessons from this review will encourage the application of RNA-editing therapy to other neuromuscular disorders.
Collapse
Affiliation(s)
- Saifullah
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Norio Motohashi
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Toshifumi Tsukahara
- Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), Ishikawa, Japan
- Division of Transdisciplinary Science, Japan Advanced Institute of Science and Technology (JAIST), Ishikawa, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| |
Collapse
|
12
|
Abstract
The AID/APOBEC polynucleotide cytidine deaminases have historically been classified as either DNA mutators or RNA editors based on their first identified nucleic acid substrate preference. DNA mutators can generate functional diversity at antibody genes but also cause genomic instability in cancer. RNA editors can generate informational diversity in the transcriptome of innate immune cells, and of cancer cells. Members of both classes can act as antiviral restriction factors. Recent structural work has illuminated differences and similarities between AID/APOBEC enzymes that can catalyse DNA mutation, RNA editing or both, suggesting that the strict functional classification of members of this family should be reconsidered. As many of these enzymes have been employed for targeted genome (or transcriptome) editing, a more holistic understanding will help improve the design of therapeutically relevant programmable base editors. In this Perspective, Pecori et al. provide an overview of the AID/APOBEC cytidine deaminase family, discussing key structural features, how they contribute to viral and tumour evolution and how they can be harnessed for (potentially therapeutic) base-editing purposes.
Collapse
|
13
|
Khosravi HM, Jantsch MF. Site-directed RNA editing: recent advances and open challenges. RNA Biol 2021; 18:41-50. [PMID: 34569891 PMCID: PMC8677011 DOI: 10.1080/15476286.2021.1983288] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/25/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022] Open
Abstract
RNA editing by cytosine and adenosine deaminases changes the identity of the edited bases. While cytosines are converted to uracils, adenines are converted to inosines. If coding regions of mRNAs are affected, the coding potential of the RNA can be changed, depending on the codon affected. The recoding potential of nucleotide deaminases has recently gained attention for their ability to correct genetic mutations by either reverting the mutation itself or by manipulating processing steps such as RNA splicing. In contrast to CRISPR-based DNA-editing approaches, RNA editing events are transient in nature, therefore reducing the risk of long-lasting inadvertent side-effects. Moreover, some RNA-based therapeutics are already FDA approved and their use in targeting multiple cells or organs to restore genetic function has already been shown. In this review, we provide an overview on the current status and technical differences of site-directed RNA-editing approaches. We also discuss advantages and challenges of individual approaches.
Collapse
Affiliation(s)
- Hamid Mansouri Khosravi
- Center of Anatomy & Cell Biology Division of Cell & Developmental Biology Medical, Unviersity of Vienna SchwarzspanierstrasseVienna, Austria
| | - Michael F. Jantsch
- Center of Anatomy & Cell Biology Division of Cell & Developmental Biology Medical, Unviersity of Vienna SchwarzspanierstrasseVienna, Austria
| |
Collapse
|