1
|
Bauer J, Rajagopal N, Gupta P, Gupta P, Nixon AE, Kumar S. How can we discover developable antibody-based biotherapeutics? Front Mol Biosci 2023; 10:1221626. [PMID: 37609373 PMCID: PMC10441133 DOI: 10.3389/fmolb.2023.1221626] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023] Open
Abstract
Antibody-based biotherapeutics have emerged as a successful class of pharmaceuticals despite significant challenges and risks to their discovery and development. This review discusses the most frequently encountered hurdles in the research and development (R&D) of antibody-based biotherapeutics and proposes a conceptual framework called biopharmaceutical informatics. Our vision advocates for the syncretic use of computation and experimentation at every stage of biologic drug discovery, considering developability (manufacturability, safety, efficacy, and pharmacology) of potential drug candidates from the earliest stages of the drug discovery phase. The computational advances in recent years allow for more precise formulation of disease concepts, rapid identification, and validation of targets suitable for therapeutic intervention and discovery of potential biotherapeutics that can agonize or antagonize them. Furthermore, computational methods for de novo and epitope-specific antibody design are increasingly being developed, opening novel computationally driven opportunities for biologic drug discovery. Here, we review the opportunities and limitations of emerging computational approaches for optimizing antigens to generate robust immune responses, in silico generation of antibody sequences, discovery of potential antibody binders through virtual screening, assessment of hits, identification of lead drug candidates and their affinity maturation, and optimization for developability. The adoption of biopharmaceutical informatics across all aspects of drug discovery and development cycles should help bring affordable and effective biotherapeutics to patients more quickly.
Collapse
Affiliation(s)
- Joschka Bauer
- Early Stage Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach/Riss, Germany
- In Silico Team, Boehringer Ingelheim, Hannover, Germany
| | - Nandhini Rajagopal
- In Silico Team, Boehringer Ingelheim, Hannover, Germany
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| | - Priyanka Gupta
- In Silico Team, Boehringer Ingelheim, Hannover, Germany
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| | - Pankaj Gupta
- In Silico Team, Boehringer Ingelheim, Hannover, Germany
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| | - Andrew E. Nixon
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| | - Sandeep Kumar
- In Silico Team, Boehringer Ingelheim, Hannover, Germany
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| |
Collapse
|
2
|
Arslan M, Uluçay T, Kale S, Kalyoncu S. Engineering of conserved residues near antibody heavy chain complementary determining region 3 (HCDR3) improves both affinity and stability. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140915. [PMID: 37059314 DOI: 10.1016/j.bbapap.2023.140915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Affinity and stability are crucial parameters in antibody development and engineering approaches. Although improvement in both metrics is desirable, trade-offs are almost unavoidable. Heavy chain complementarity determining region 3 (HCDR3) is the best-known region for antibody affinity but its impact on stability is often neglected. Here, we present a mutagenesis study of conserved residues near HCDR3 to elicit the role of this region in the affinity-stability trade-off. These key residues are positioned around the conserved salt bridge between VH-K94 and VH-D101 which is crucial for HCDR3 integrity. We show that the additional salt bridge at the stem of HCDR3 (VH-K94:VH-D101:VH-D102) has an extensive impact on this loop's conformation, therefore simultaneous improvement in both affinity and stability. We find that the disruption of π-π stacking near HCDR3 (VH-Y100E:VL-Y49) at the VH-VL interface cause an irrecoverable loss in stability even if it improves the affinity. Molecular simulations of putative rescue mutants exhibit complex and often non-additive effects. We confirm that our experimental measurements agree with the molecular dynamic simulations providing detailed insights for the spatial orientation of HCDR3. VH-V102 right next to HCDR3 salt bridge might be an ideal candidate to overcome affinity-stability trade-off.
Collapse
Affiliation(s)
- Merve Arslan
- Izmir Biomedicine and Genome Center, Balçova, 35340 Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balçova, 35340 Izmir, Turkey
| | - Tuğçe Uluçay
- Izmir Biomedicine and Genome Center, Balçova, 35340 Izmir, Turkey
| | - Seyit Kale
- Izmir Biomedicine and Genome Center, Balçova, 35340 Izmir, Turkey
| | - Sibel Kalyoncu
- Izmir Biomedicine and Genome Center, Balçova, 35340 Izmir, Turkey.
| |
Collapse
|
3
|
Chiba S, Okuno Y, Ohta M. Structure-Based Affinity Maturation of Antibody Based on Double-Point Mutations. Methods Mol Biol 2023; 2552:323-331. [PMID: 36346601 DOI: 10.1007/978-1-0716-2609-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Structure-based site-directed affinity maturation of antibodies can be expanded by multiple-point mutations to obtain various mutants. However, selecting the appropriate number of promising mutants for experimental evaluation from the vast number of combinations of multiple-point mutations is challenging. In this report, we describe how to narrow candidate mutants using the so-called weak interaction analysis such as CH-π and CH-O in addition to widely recognized interactions such as hydrogen bonds.
Collapse
Affiliation(s)
- Shuntaro Chiba
- RIKEN Center for Computational Science, RIKEN, Yokohama, Japan
| | - Yasushi Okuno
- RIKEN Center for Computational Science, RIKEN, Yokohama, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masateru Ohta
- RIKEN Center for Computational Science, RIKEN, Yokohama, Japan.
| |
Collapse
|
4
|
Abstract
In the computational design of antibodies, the interaction analysis between target antigen and antibody is an essential process to obtain feedback for validation and optimization of the design. Kinetic and thermodynamic parameters as well as binding affinity (KD) allow for a more detailed evaluation and understanding of the molecular recognition. In this chapter, we summarize the conventional experimental methods which can calculate KD value (ELISA, FP), analyze a binding activity to actual cells (FCM), and evaluate the kinetic and thermodynamic parameters (ITC, SPR, BLI), including high-throughput analysis and a recently developed experimental technique.
Collapse
Affiliation(s)
- Aki Tanabe
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan.
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan.
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
5
|
Ikeuchi E, Kuroda D, Nakakido M, Murakami A, Tsumoto K. Delicate balance among thermal stability, binding affinity, and conformational space explored by single-domain V HH antibodies. Sci Rep 2021; 11:20624. [PMID: 34663870 PMCID: PMC8523659 DOI: 10.1038/s41598-021-98977-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 09/08/2021] [Indexed: 11/29/2022] Open
Abstract
The high binding affinities and specificities of antibodies have led to their use as drugs and biosensors. Single-domain VHH antibodies exhibit high specificity and affinity but have higher stability and solubility than conventional antibodies as they are single-domain proteins. In this work, based on physicochemical measurements and molecular dynamics (MD) simulations, we have gained insight that will facilitate rational design of single-chain VHH antibodies. We first assessed two homologous VHH antibodies by differential scanning calorimetry (DSC); one had a high (64.8 °C) and the other a low (58.6 °C) melting temperature. We then generated a series of the variants of the low stability antibody and analyzed their thermal stabilities by DSC and characterized their structures through MD simulations. We found that a single mutation that resulted in 8.2 °C improvement in melting temperature resulted in binding affinity an order of magnitude lower than the parent antibody, likely due to a shift of conformational space explored by the single-chain VHH antibody. These results suggest that the delicate balance among conformational stability, binding capability, and conformational space explored by antibodies must be considered in design of fully functional single-chain VHH antibodies.
Collapse
Affiliation(s)
- Emina Ikeuchi
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan.,Panasonic Corporation Technology Division, Kyoto, 619-0237, Japan
| | - Daisuke Kuroda
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan.,Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan.,Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Makoto Nakakido
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan.,Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Akikazu Murakami
- Department of Parasitology and Immunopathoetiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan. .,Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan. .,Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan. .,Laboratory of Medical Proteomics, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
6
|
Computational and Rational Design of Single-Chain Antibody against Tick-Borne Encephalitis Virus for Modifying Its Specificity. Viruses 2021; 13:v13081494. [PMID: 34452359 PMCID: PMC8402911 DOI: 10.3390/v13081494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/23/2021] [Indexed: 12/27/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) causes 5−7 thousand cases of human meningitis and encephalitis annually. The neutralizing and protective antibody ch14D5 is a potential therapeutic agent. This antibody exhibits a high affinity for binding with the D3 domain of the glycoprotein E of the Far Eastern subtype of the virus, but a lower affinity for the D3 domains of the Siberian and European subtypes. In this study, a 2.2-fold increase in the affinity of single-chain antibody sc14D5 to D3 proteins of the Siberian and European subtypes of the virus was achieved using rational design and computational modeling. This improvement can be further enhanced in the case of the bivalent binding of the full-length chimeric antibody containing the identified mutation.
Collapse
|
7
|
Kasahara K, Kuroda D, Tanabe A, Kawade R, Nagatoishi S, Tsumoto K. Anion solvation enhanced by positive supercharging mutations preserves thermal stability of an antibody in a wide pH range. Biochem Biophys Res Commun 2021; 563:54-59. [PMID: 34058475 DOI: 10.1016/j.bbrc.2021.05.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 12/27/2022]
Abstract
Proteins function through interactions with other molecules. In protein engineering, scientists often engineer proteins by mutating their amino acid sequences on the protein surface to improve various physicochemical properties. "Supercharging" is a method to design proteins by mutating surface residues with charged amino acids. Previous studies demonstrated that supercharging mutations conferred better thermal resistance, solubility, and cell penetration to proteins. Likewise, antibodies recognize antigens through the antigen-binding site on the surface. The genetic and structural diversity of antibodies leads to high specificity and affinity toward antigens, enabling antibodies to be versatile tools in various applications. When assessing therapeutic antibodies, surface charge is an important factor to consider because the isoelectric point plays a role in protein clearance inside the body. In this study, we explored how supercharging mutations affect physicochemical properties of antibodies. Starting from a crystal structure of an antibody with the net charge of -4, we computationally designed a supercharged variant possessing the net charge of +10. The positive-supercharged antibody exhibited marginal improvement in thermal stability, but the secondary structure and the binding affinity to the antigen (net charge of +8) were preserved. We also used physicochemical measurements and molecular dynamics simulations to analyze the effects of supercharging mutations in sodium phosphate buffer with different pH and ion concentrations, which revealed preferential solvation of phosphate ions to the supercharged surface relative to the wild-type surface. These results suggest that supercharging would be a useful approach to preserving thermal stability of antibodies in a wide range of pH, which may enable further diversification of antibody repertoires beyond natural evolution.
Collapse
Affiliation(s)
- Keisuke Kasahara
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Daisuke Kuroda
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Aki Tanabe
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Raiji Kawade
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Satoru Nagatoishi
- The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|