1
|
Nguyen MH, Nguyen TYN, Le THN, Le TNT, Chau NTN, Le TMH, Huy Nguyen BQ. Medicinal plants as a potential resource for the discovery of novel structures towards cancer drug resistance treatment. Heliyon 2024; 10:e39229. [PMID: 39492898 PMCID: PMC11530815 DOI: 10.1016/j.heliyon.2024.e39229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/23/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Despite extensive research in chemotherapy, global cancer concerns persist, exacerbated by the challenge of drug resistance, which imposes economic and medical burdens. Natural compounds, particularly secondary metabolites from medicinal plants, present promising avenues for overcoming cancer drug resistance due to their diverse structures and essential pharmacological effects. This review provides a comprehensive exploration of cancer cell resistance mechanisms and target actions for reversing resistance and highlights the in vitro and in vivo efficacy of noteworthy alkaloids, flavonoids, and other compounds, emphasizing their potential as therapeutic agents. The molecular properties supporting ligand interactions are thoroughly examined, providing a robust theoretical foundation. The review concludes by discussing methods including quantitative structure-activity relationships and molecular docking, offering insights into screening potential candidates. Current trends in clinical treatment, contributing to a holistic understanding of the multifaceted approaches to address cancer drug resistance are also outlined.
Collapse
Affiliation(s)
- Minh Hien Nguyen
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh city, Viet Nam
| | - Thi Yen Nhi Nguyen
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh city, Viet Nam
- Faculty of Applied Science, Ho Chi Minh City University of Technology, Vietnam National University Ho Chi Minh City, 268 Ly Thuong Kiet Street Ward 14, District 10, Ho Chi Minh City, Viet Nam
| | - Thien Han Nguyen Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Thi Ngoc Tam Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Ngoc Trong Nghia Chau
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Tu Manh Huy Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Bui Quoc Huy Nguyen
- The University of Danang - VN-UK Institute for Research and Executive Education, 41 Le Duan Street, Hai Chau 1 Ward, Hai Chau District, Danang City, Viet Nam
| |
Collapse
|
2
|
Fu CF, Li JL, Chen JW, Liang H, Zhao WR, He SY, Ma XW, Yang XF, Wang HL. Mechanism and therapeutic potential of traditional Chinese medicine extracts in sepsis. Front Pharmacol 2024; 15:1365639. [PMID: 39021837 PMCID: PMC11251979 DOI: 10.3389/fphar.2024.1365639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Sepsis is a complex syndrome characterized by multi-organ dysfunction, due to the presence of harmful microorganisms in blood which could cause mortality. Complications associated with sepsis involve multiple organ dysfunction. The pathogenesis of sepsis remains intricate, with limited treatment options and high mortality rates. Traditional Chinese medicine (TCM) has consistently demonstrated to have a potential on various disease management. Its complements include reduction of oxidative stress, inhibiting inflammatory pathways, regulating immune responses, and improving microcirculation. Traditional Chinese medicine can mitigate or even treat sepsis in a human system. This review examines progress on the use of TCM extracts for treating sepsis through different pharmacological action and its mechanisms. The potential targets of TCM extracts and active ingredients for the treatment of sepsis and its complications have been elucidated through molecular biology research, network pharmacology prediction, molecular docking analysis, and visualization analysis. Our aim is to provide a theoretical basis and empirical support for utilizing TCM in the treatment of sepsis and its complications while also serving as a reference for future research and development of sepsis drugs.
Collapse
Affiliation(s)
- Chen-Fei Fu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jian-Long Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | | | - Hao Liang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wen-Rui Zhao
- Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Shi-Yu He
- Shenzhen Pingle Orthopedic Hospital, Shenzhen, China
| | - Xiao-Wei Ma
- Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Xiao-Fan Yang
- Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - He-Lin Wang
- Donghuashi Community Health Service Center, Beijing, China
| |
Collapse
|
3
|
Wang Z, Nie K, Liang Y, Niu J, Yu X, Zhang O, Liu L, Shi X, Wang Y, Feng X, Zhu Y, Wang P, Cheng G. A mosquito salivary protein-driven influx of myeloid cells facilitates flavivirus transmission. EMBO J 2024; 43:1690-1721. [PMID: 38378891 PMCID: PMC11066113 DOI: 10.1038/s44318-024-00056-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/22/2024] Open
Abstract
Mosquitoes transmit many disease-relevant flaviviruses. Efficient viral transmission to mammalian hosts requires mosquito salivary factors. However, the specific salivary components facilitating viral transmission and their mechanisms of action remain largely unknown. Here, we show that a female mosquito salivary gland-specific protein, here named A. aegypti Neutrophil Recruitment Protein (AaNRP), facilitates the transmission of Zika and dengue viruses. AaNRP promotes a rapid influx of neutrophils, followed by virus-susceptible myeloid cells toward mosquito bite sites, which facilitates establishment of local infection and systemic dissemination. Mechanistically, AaNRP engages TLR1 and TLR4 of skin-resident macrophages and activates MyD88-dependent NF-κB signaling to induce the expression of neutrophil chemoattractants. Inhibition of MyD88-NF-κB signaling with the dietary phytochemical resveratrol reduces AaNRP-mediated enhancement of flavivirus transmission by mosquitoes. These findings exemplify how salivary components can aid viral transmission, and suggest a potential prophylactic target.
Collapse
Affiliation(s)
- Zhaoyang Wang
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Kaixiao Nie
- Department of Pathogen Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yan Liang
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jichen Niu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
| | - Xi Yu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Oujia Zhang
- Department of Pathogen Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100086, China
| | - Long Liu
- Institute of Virology, Hubei University of Medicine, Shiyan, 442000, China
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Xiaolu Shi
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yibaina Wang
- China National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Xuechun Feng
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518000, China
| | - Yibin Zhu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China.
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518000, China.
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
- Southwest United Graduate School, Kunming, 650092, China.
| |
Collapse
|
4
|
Wu X, Zhou L, Li Z, Rong K, Gao S, Chen Y, Zuo J, Tang W. Arylacryl amides: Design, synthesis and the protection against cisplatin-induced acute kidney injury via TLR4/STING/NF-κB pathway. Bioorg Chem 2024; 146:107303. [PMID: 38521012 DOI: 10.1016/j.bioorg.2024.107303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Arylpropionic ester scaffold was found as anti-inflammatory agents for the treatment and prevention of acute kidney injury (AKI). To further study the structure-activity relationship (SAR) of this scaffold, a series of acryl amides were designed, synthesized, and evaluated their anti-inflammation. Of these, compound 9d displayed the protective effect on renal tubular epithelial cells to significantly enhance the survival rate through inhibiting NF-κB phosphorylation and promoting cell proliferation in cisplatin-induced HK2 cells. Furthermore, 9d can interact with TLR4 to inhibit TLR4/STING/NF-κB pathway in the RAW264.7 cell. In vivo AKI mice model, 9d significantly downregulated the level of serum creatinine (Scr), blood urea nitrogen (BUN) and the inflammatory factors (IL-1β, IL-6, TNF-α) to improve kidney function. Morphological and KIM-1 analyses showed that 9d alleviated cisplatin-induced tubular damage. In a word, 9d was a promising lead compound for preventive and therapeutic of AKI.
Collapse
Affiliation(s)
- Xiaoming Wu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China
| | - Long Zhou
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China
| | - Ziyun Li
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China
| | - Kuanrong Rong
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China
| | - Shan Gao
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China
| | - Yun Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China
| | - Jiawei Zuo
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei 230011, China.
| | - Wenjian Tang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
5
|
Chen Z, Xiao G, Ao J. Resveratrol Attenuates Rheumatoid Arthritis Induce Neutrophil Extracellular Traps via TLR-4 Mediated Inflammation in C57BL/6 Mice. Physiol Res 2024; 73:91-104. [PMID: 38466008 PMCID: PMC11019621 DOI: 10.33549/physiolres.935172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/17/2023] [Indexed: 04/26/2024] Open
Abstract
The objective of this study was to evaluate whether RSV inhibits neutrophil extracellular traps (NETs) that induce joint hyperalgesia in C57BL/6 mice after adjuvant-induced arthritis. A subplantar injection of Freund's complete adjuvant was administered to C57BL/6 mice on day 0 for immunization in the AIA model. Resveratrol (RSV, 25 mg/kg) was administered intraperitoneally once daily starting on day 22 and continuing for two weeks. The effects of mechanical hyperalgesia and edema formation have been assessed in addition to histopathological scoring. Mice were sacrificed on day 35 to determine cytokine levels and PADI4 and COX-2 expression levels. ELISA was used to quantify neutrophil extracellular traps (NETs) along with neutrophil elastase-DNA and myeloperoxidase-DNA complexes in neutrophils. An immunohistochemical stain was performed on knee joints to determine the presence of nuclear factor kappa B p65 (NF-kappaB p65). AIA mice were found to have higher levels of NET in joints and their joint cells demonstrated an increased expression of the PADI4 gene. Treatment with RSV in AIA mice (25 mg/kg, i.p.) significantly (P<0.05) inhibited joint hyperalgesia, resulting in a significant increase in mechanical threshold, a decrease in articular edema, a decrease in the production of inflammatory cytokines, increased COX-2 expression, and a decrease in the immunostaining of NF-kappaB. Furthermore, treatment with RSV significantly reduced the amount of neutrophil elastase (NE)-DNA and MPO-DNA complexes, which were used as indicators of NET formation (P<0.05). This study indicates that RSV reduces NET production and hyperalgesia by reducing inflammation mediated by PADI4 and COX-2. According to these data, NETs contribute to joint pain and resveratrol can be used to treat pain in RA through this pathway.
Collapse
Affiliation(s)
- Z Chen
- Department of Orthopedics, Wushan County Hospital of TCM, Chongqing, China.
| | | | | |
Collapse
|
6
|
Vajdi M, Sefidmooye Azar P, Mahmoodpoor A, Dashti F, Sanaie S, Kiani Chalmardi F, Karimi A. A comprehensive insight into the molecular and cellular mechanisms of action of resveratrol on complications of sepsis a systematic review. Phytother Res 2023; 37:3780-3808. [PMID: 37405908 DOI: 10.1002/ptr.7917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/08/2023] [Accepted: 05/27/2023] [Indexed: 07/07/2023]
Abstract
Sepsis and septic shock are still one of the most important medical challenges. Sepsis is an extreme and uncontrolled response of the innate immune system to invading pathogenesis. Resveratrol (3,5,4'-trihydroxytrans-stilbene), is a phenolic and non-flavonoid compound naturally produced by some plants and fruits. The object of the current study is to systematically review the impacts of resveratrol and its mechanisms of function in the management of sepsis and its related complications. The guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statements were applied to perform the study (PROSPERO: CRD42021289357). We searched Embase, Web of Science, Google Scholar, Science Direct, PubMed, ProQuest, and Scopus databases up to January 2023 by using the relevant keywords. Study criteria were met by 72 out of 1415 articles screened. The results of this systematic review depict that resveratrol can reduces the complications of sepsis by affecting inflammatory pathways, oxidative stress, and modulating immune responses. Future human randomized clinical trials are necessary due to the promising therapeutic effects of resveratrol on sepsis complications and the lack of clinical trials in this regard.
Collapse
Affiliation(s)
- Mahdi Vajdi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pouria Sefidmooye Azar
- Department of Nutrition and Hospitality Management, School of Applied Sciences, The University of Mississippi, Oxford, Mississippi, USA
| | - Ata Mahmoodpoor
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Dashti
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Arash Karimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Song Y, Lin W, Zhu W. Traditional Chinese medicine for treatment of sepsis and related multi-organ injury. Front Pharmacol 2023; 14:1003658. [PMID: 36744251 PMCID: PMC9892725 DOI: 10.3389/fphar.2023.1003658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
Sepsis is a common but critical illness in patients admitted to the intensive care unit and is associated with high mortality. Although there are many treatments for sepsis, specific and effective therapies are still lacking. For over 2,000 years, traditional Chinese medicine (TCM) has played a vital role in the treatment of infectious diseases in Eastern countries. Both anecdotal and scientific evidence show that diverse TCM preparations alleviate organ dysfunction caused by sepsis by inhibiting the inflammatory response, reducing oxidative stress, boosting immunity, and maintaining cellular homeostasis. This review reports on the efficacy and mechanism of action of various TCM compounds, herbal monomer extracts, and acupuncture, on the treatment of sepsis and related multi-organ injury. We hope that this information would be helpful to better understand the theoretical basis and empirical support for TCM in the treatment of sepsis.
Collapse
Affiliation(s)
- Yaqin Song
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiji Lin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Ekaney ML, Carrillo-Garcia JC, Gonzalez-Gray G, Wilson HH, Jordan MM, McKillop IH, Evans SL. Platelet Aggregation, Mitochondrial Function and Morphology in Cold Storage: Impact of Resveratrol and Cytochrome c Supplementation. Cells 2022; 12:cells12010166. [PMID: 36611959 PMCID: PMC9818067 DOI: 10.3390/cells12010166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
Donated platelets are critical components of hemostasis management. Extending platelet storage beyond the recommended guidelines (5 days, 22 °C) is of clinical significance. Platelet coagulation function can be prolonged with resveratrol (Res) or cytochrome c (Cyt c) at 4 °C. We hypothesized that storage under these conditions is associated with maintained aggregation function, decreased reactive oxygen species (ROS) production, increased mitochondrial respiratory function, and preserved morphology. Donated platelets were stored at 22 °C or 4 °C supplemented with 50 μM Res or 100 μM Cyt c and assayed on days 0 (baseline), 5, 7 and 10 for platelet aggregation, morphology, intracellular ROS, and mitochondrial function. Declining platelet function and increased intracellular ROS were maintained by Res and Cyt c. Platelet respiratory control ratio declined during storage using complex I + II (CI + CII) or CIV substrates. No temperature-dependent differences (4 °C versus 22 °C) in respiratory function were observed. Altered platelet morphology was observed after 7 days at 22 °C, effects that were blunted at 4 °C independent of exposure to Res or Cyt c. Storage of platelets at 4 °C with Res and Cyt c modulates ROS generation and platelet structural integrity.
Collapse
|
9
|
Combined In Silico and Experimental Investigations of Resveratrol Encapsulation by Beta-Cyclodextrin. PLANTS 2022; 11:plants11131678. [PMID: 35807628 PMCID: PMC9269368 DOI: 10.3390/plants11131678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
The results of the computational and the physicochemical studies of the encapsulation of resveratrol with β-cyclodextrin are presented here. At first, the molecular docking experiments predicted good binding. Several MD simulations and MM-PBSA experiments confirmed the reliable binding, showing optimal kinetics and energy. As an application, resveratrol inclusion complexes with β-cyclodextrin were obtained in an aqueous alcohol medium via microwave treatment. The results of thermographic measurements of the obtained clathrates using a differential scanning calorimeter are presented, and the obtained activation energy was calculated using the Ozawa–Flynn–Wall and Friedman methods, as well as nonparametric kinetics. The effect of complexation on the kinetic parameters of thermal destruction of the β-cyclodextrin–resveratrol inclusion complex was considered. The morphology of the surface of the obtained clathrate complexes was described using a scanning electron microscope. The spectral properties of the inclusion complex were characterized by FT-IR, 1H, and 13С NMR spectroscopic data. The obtained in silico, morphological, thermogravimetric, and spectral results confirmed the formation of the resveratrol–β-cyclodextrin complex. The antioxidant activities of the inclusion complex were determined to be 12.1 μg/mL, compared to 14.3 μg/mL for free resveratrol, indicating an improvement in the bioactivity.
Collapse
|
10
|
Electroacupuncture at Zusanli Alleviates Sepsis by Regulating the TLR4-MyD88-NF-Kappa B Pathway and Diversity of Intestinal Flora. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6706622. [PMID: 35722155 PMCID: PMC9205730 DOI: 10.1155/2022/6706622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
Abstract
Background Electroacupuncture (EA) at the Zusanli acupoint (ST36) has shown therapeutic potential for sepsis due to its ability to limit inflammation and to regulate gastrointestinal tract symptoms. However, the mechanisms contributing to the effects of EA at ST36 on sepsis and connections with the intestinal flora remain unclear. This study was designed to explore the effects of EA at ST36 on Toll-like receptor 4 signaling and the intestinal flora. Methods ICR mice were randomly divided into 4 groups: control group, model group, EA group, and sham EA group. EA at ST36 was performed at 2.5 mA and 2 to 100 Hz, and the 30 min of dense wave was achieved over 5 days. A sepsis model was built by intraperitoneal injection of lipopolysaccharide (LPS, 10 mg/mL). The levels of expression of interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), and IL-10 were detected by enzyme-linked immunosorbent assays, and lactate dehydrogenase (LDH) levels in serum were measured by biochemical tests. Expression levels of Bax, Bcl2, cleaved caspase-3, Toll-like receptor (TLR4), nuclear factor-kappa B (NF-κB), and myeloid differentiation factor 88 (MyD88) were assessed by the Western blotting. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining was used to evaluate apoptosis. The intestinal microecology was assessed via 16S rRNA gene sequencing. Results EA at ST36 reduced the expression of IL-1β, IL-6, and TNF-α and increased the expression of IL-10 to inhibit the inflammatory response. EA at ST36 also inhibited apoptosis, as measured by TUNEL staining, and decreased the Bax/Bcl2 ratio and levels of caspase-3 and cleaved caspase-3, as well as LDH release. Our results suggest that alleviation of sepsis may correlate with the downregulation of levels of TLR4, NF-κB, and MyD88. Importantly, EA at ST36 improved the diversity of the intestinal flora and increased the abundance of Firmicutes and Actinobacteria. Conclusion. EA at ST36 prevented sepsis from worsening by inhibiting inflammation and apoptosis, which correlated with the regulation of the TLR4/NF-κB/MyD88 signaling axis and modulation of the intestinal flora.
Collapse
|
11
|
Li J, Zeng X, Yang F, Wang L, Luo X, Liu R, Zeng F, Lu S, Huang X, Lei Y, Lan Y. Resveratrol: Potential Application in Sepsis. Front Pharmacol 2022; 13:821358. [PMID: 35222035 PMCID: PMC8864164 DOI: 10.3389/fphar.2022.821358] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/21/2022] [Indexed: 01/02/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction syndrome caused by host response disorders due to infection or infectious factors and is a common complication of patients with clinical trauma, burns, and infection. Resveratrol is a natural polyphenol compound that is a SIRT-1 activator with anti-inflammatory, antiviral, antibacterial, antifungal inhibitory abilities as well as cardiovascular and anti-tumor protective effects. In recent years, some scholars have applied resveratrol in animal models of sepsis and found that it has an organ protective effect and can improve the survival time and reduce the mortality of animals with sepsis. In this study, Medline (Pubmed), embase, and other databases were searched to retrieve literature published in 2021 using the keywords “resveratrol” and “sepsis,” and then the potential of resveratrol for the treatment of sepsis was reviewed and prospected to provide some basis for future clinical research.
Collapse
Affiliation(s)
- Jiajia Li
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoting Zeng
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fuxun Yang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Wang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoxiu Luo
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongan Liu
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fan Zeng
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Sen Lu
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobo Huang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Lei
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yunping Lan
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
12
|
Involvement of Toll-Like Receptor 4 in Decreased Vasopressor Response Following Trauma/Hemorrhagic Shock. Crit Care Explor 2021; 3:e0469. [PMID: 34250499 PMCID: PMC8263324 DOI: 10.1097/cce.0000000000000469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES: Refractory vascular failure due to the inability of vascular smooth muscle to respond to vasoconstrictors such as phenylephrine is a final common pathway for severe circulatory shock of any cause, including trauma/hemorrhagic shock. Increased inflammation, Toll-like receptor 4 activation, and decreased response of the alpha-1 adrenergic receptors which control vascular tone have been reported in trauma/hemorrhagic shock. HYPOTHESIS: In trauma/hemorrhagic shock, Toll-like receptor 4 activation contributes to vascular failure via decreased bioavailability of adrenergic receptors. DESIGN AND MEASUREMENTS: Trauma/hemorrhagic shock was induced in Wistar rats (laparotomy combined with mean arterial pressure at 40 mm Hg for 90 min followed by 2 hr resuscitation with Lactated Ringers solution). To inhibit Toll-like receptor 4, resatorvid (TAK-242) and resveratrol were used, and plasma was collected. Smooth muscle cells were incubated with lipopolysaccharide (10 ng/mL) or plasma. Inflammatory cytokines were screened using dot-blot. Toll-like receptor 4 and nuclear factor κB activation and cellular localization of the alpha-1 adrenergic receptor were measured by immunofluorescence imaging and Western blot analysis. Clustered regularly interspaced short palindromic repeats/Cas9 was used to knock out Toll-like receptor 4, and calcium influx following stimulation with phenylephrine was recorded. MAIN RESULTS: Trauma/hemorrhagic shock caused a decreased response to phenylephrine, whereas Toll-like receptor 4 inhibition improved blood pressure. Trauma/hemorrhagic shock plasma activated the Toll-like receptor 4/nuclear factor κB pathway in smooth muscle cells. Double labeling of Toll-like receptor 4 and the alpha-1 adrenergic receptor showed that these receptors are colocalized on the cell membrane. Activation of Toll-like receptor 4 caused cointernalization of both receptors. Calcium influx was impaired in cells incubated with trauma/hemorrhagic shock plasma but restored when Toll-like receptor 4 was knocked out or inhibited. CONCLUSIONS: Activation of the Toll-like receptor 4 desensitizes vascular smooth muscle cells to vasopressors in experimental trauma/hemorrhagic shock by reducing the levels of membrane alpha-1 adrenergic receptor.
Collapse
|
13
|
Chrysin Derivative CM1 and Exhibited Anti-Inflammatory Action by Upregulating Toll-Interacting Protein Expression in Lipopolysaccharide-Stimulated RAW264.7 Macrophage Cells. Molecules 2021; 26:molecules26061532. [PMID: 33799689 PMCID: PMC8000858 DOI: 10.3390/molecules26061532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022] Open
Abstract
Although our previous study revealed that gamma-irradiated chrysin enhanced anti-inflammatory activity compared to intact chrysin, it remains unclear whether the chrysin derivative, CM1, produced by gamma irradiation, negatively regulates toll-like receptor (TLR) signaling. In this study, we investigated the molecular basis for the downregulation of TLR4 signal transduction by CM1 in macrophages. We initially determined the appropriate concentration of CM1 and found no cellular toxicity below 2 μg/mL. Upon stimulation with lipopolysaccharide (LPS), CM1 modulated LPS-stimulated inflammatory action by suppressing the release of proinflammatory mediators (cytokines TNF-α and IL-6) and nitric oxide (NO) and downregulated the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways. Furthermore, CM1 markedly elevated the expression of the TLR negative regulator toll-interacting protein (Tollip) in dose- and time-dependent manners. LPS-induced expression of cell surface molecules (CD80, CD86, and MHC class I/II), proinflammatory cytokines (TNF-α and IL-6), COX-2, and iNOS-mediated NO were inhibited by CM1; these effects were prevented by the knockdown of Tollip expression. Additionally, CM1 did not affect the downregulation of LPS-induced expression of MAPKs and NF-κB signaling in Tollip-downregulated cells. These findings provide insight into effective therapeutic intervention of inflammatory disease by increasing the understanding of the negative regulation of TLR signaling induced by CM1.
Collapse
|