1
|
Alvarado Obando M, Rey-Varela D, Cava F, Dörr T. Genetic interaction mapping reveals functional relationships between peptidoglycan endopeptidases and carboxypeptidases. PLoS Genet 2024; 20:e1011234. [PMID: 38598601 PMCID: PMC11034669 DOI: 10.1371/journal.pgen.1011234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/22/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
Peptidoglycan (PG) is the main component of the bacterial cell wall; it maintains cell shape while protecting the cell from internal osmotic pressure and external environmental challenges. PG synthesis is essential for bacterial growth and survival, and a series of PG modifications are required to allow expansion of the sacculus. Endopeptidases (EPs), for example, cleave the crosslinks between adjacent PG strands to allow the incorporation of newly synthesized PG. EPs are collectively essential for bacterial growth and must likely be carefully regulated to prevent sacculus degradation and cell death. However, EP regulation mechanisms are poorly understood. Here, we used TnSeq to uncover novel EP regulators in Vibrio cholerae. This screen revealed that the carboxypeptidase DacA1 (PBP5) alleviates EP toxicity. dacA1 is essential for viability on LB medium, and this essentiality was suppressed by EP overexpression, revealing that EP toxicity both mitigates, and is mitigated by, a defect in dacA1. A subsequent suppressor screen to restore viability of ΔdacA1 in LB medium identified hypomorphic mutants in the PG synthesis pathway, as well as mutations that promote EP activation. Our data thus reveal a more complex role of DacA1 in maintaining PG homeostasis than previously assumed.
Collapse
Affiliation(s)
- Manuela Alvarado Obando
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
| | - Diego Rey-Varela
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Felipe Cava
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Tobias Dörr
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute for Host-Microbe Interactions and Disease (CIHMID), Ithaca, New York, United States of America
| |
Collapse
|
2
|
Chen L, Xie YL, Wu XH, Wu LL, Yang J, Gao Y, Mi Y, Yang F. Bioactivity and genome analysis of Bacillus amyloliquefaciens GL18 isolated from the rhizosphere of Kobresia myosuroides in an alpine meadow. Antonie Van Leeuwenhoek 2024; 117:16. [PMID: 38189906 DOI: 10.1007/s10482-023-01917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/04/2023] [Indexed: 01/09/2024]
Abstract
The unique eco-environment of the Qinghai-Tibet Plateau breeds abundant microbial resources. In this research, Bacillus amyloliquefaciens GL18, isolated from the rhizosphere of Kobresia myosuroides from an alpine meadow, and the antagonistic activity, bacteriostatic hydrolase activity, and low temperature, salt, and drought resistance of it were determined and analysed. The seedlings of Avena sativa were root-irrigated using bacteria suspensions (cell concentration 1 × 107 cfu/mL) of GL18, and the growth-promoting effect of GL18 on it was determined under cold, salt and drought stress, respectively. The whole genome of GL18 was sequenced, and its functional genes were analysed. GL18 presented significant antagonistic activity to Fusarium graminearum, Fusarium acuminatum, Fusarium oxysporum and Aspergillus niger (inhibition zone diameter > 17 mm). Transparent zones formed on four hydrolase detection media, indicating that GL18 secreted cellulase, protease, pectinase and β-1,3-glucanase. GL18 tolerated conditions of 10 °C, 11% NaCl and 15% PEG-6000, presenting cold, salt and drought resistance. GL18 improved the cold, salt and drought tolerance of A. sativa and it showed significant growth effects under different stress. The total length of the GL18 genome was 3,915,550 bp, and the number of coding DNA sequence was 3726. Compared with the clusters of orthologous groups of proteins, gene ontology and kyoto encyclopedia of genes and genomes databases, 3088, 2869 and 2357 functional genes were annotated, respectively. GL18 contained gene clusters related to antibacterial substances, functional genes related to the synthesis of plant growth-promoting substances, and encoding genes related to stress resistance. This study identified an excellent Bacillus strain and provided a theoretical basis for improving stress resistance and promoting the growth of herbages under abiotic stress.
Collapse
Affiliation(s)
- L Chen
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China
| | - Y L Xie
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China.
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China.
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai University, Xining, 810016, China.
| | - X H Wu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China
| | - L L Wu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China
| | - J Yang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China
| | - Y Gao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China
| | - Y Mi
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China
| | - F Yang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China
| |
Collapse
|
3
|
Obando MA, Dörr T. Novel role for peptidoglycan carboxypeptidases in maintaining the balance between bacterial cell wall synthesis and degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548665. [PMID: 37503280 PMCID: PMC10369974 DOI: 10.1101/2023.07.12.548665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Peptidoglycan (PG) is the main component of the bacterial cell wall; it maintains cell shape while protecting the cell from internal osmotic pressure and external environmental challenges. PG synthesis is essential for bacterial growth and survival, and a series of PG modifications are required to allow expansion of the sacculus. Endopeptidases (EPs), for example, cleave the crosslinks between adjacent PG strands to allow the incorporation of newly synthesized PG. EPs are collectively essential for bacterial growth and must likely be carefully regulated to prevent sacculus degradation and cell death. However, EP regulation mechanisms are poorly understood. Here, we used TnSeq to uncover novel EP regulation factors in Vibrio cholerae. This screen revealed that the carboxypeptidase DacA1 (PBP5) alleviates EP toxicity. dacA1 is essential for viability on LB medium, and this essentiality was suppressed by EP overexpression, revealing that EP toxicity both mitigates, and is mitigated by, a defect in dacA1. A subsequent suppressor screen to restore viability of ΔdacA1 in LB medium was answered by hypomorphic mutants in the PG synthesis pathway, as well as mutations that promote PG degradation. Our data thus reveal a key role of DacA1 in maintaining the balance between PG synthesis and degradation.
Collapse
Affiliation(s)
- Manuela Alvarado Obando
- Department of Microbiology, Cornell University, Ithaca, NY
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Tobias Dörr
- Department of Microbiology, Cornell University, Ithaca, NY
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| |
Collapse
|
4
|
Griffin ME, Klupt S, Espinosa J, Hang HC. Peptidoglycan NlpC/P60 peptidases in bacterial physiology and host interactions. Cell Chem Biol 2023; 30:436-456. [PMID: 36417916 PMCID: PMC10192474 DOI: 10.1016/j.chembiol.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022]
Abstract
The bacterial cell wall is composed of a highly crosslinked matrix of glycopeptide polymers known as peptidoglycan that dictates bacterial cell morphology and protects against environmental stresses. Regulation of peptidoglycan turnover is therefore crucial for bacterial survival and growth and is mediated by key protein complexes and enzyme families. Here, we review the prevalence, structure, and activity of NlpC/P60 peptidases, a family of peptidoglycan hydrolases that are crucial for cell wall turnover and division as well as interactions with antibiotics and different hosts. Understanding the molecular functions of NlpC/P60 peptidases should provide important insight into bacterial physiology, their interactions with different kingdoms of life, and the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Matthew E Griffin
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Steven Klupt
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Juliel Espinosa
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA; Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
5
|
Galinier A, Delan-Forino C, Foulquier E, Lakhal H, Pompeo F. Recent Advances in Peptidoglycan Synthesis and Regulation in Bacteria. Biomolecules 2023; 13:biom13050720. [PMID: 37238589 DOI: 10.3390/biom13050720] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Bacteria must synthesize their cell wall and membrane during their cell cycle, with peptidoglycan being the primary component of the cell wall in most bacteria. Peptidoglycan is a three-dimensional polymer that enables bacteria to resist cytoplasmic osmotic pressure, maintain their cell shape and protect themselves from environmental threats. Numerous antibiotics that are currently used target enzymes involved in the synthesis of the cell wall, particularly peptidoglycan synthases. In this review, we highlight recent progress in our understanding of peptidoglycan synthesis, remodeling, repair, and regulation in two model bacteria: the Gram-negative Escherichia coli and the Gram-positive Bacillus subtilis. By summarizing the latest findings in this field, we hope to provide a comprehensive overview of peptidoglycan biology, which is critical for our understanding of bacterial adaptation and antibiotic resistance.
Collapse
Affiliation(s)
- Anne Galinier
- Laboratoire de Chimie Bactérienne, UMR 7283, Institut de Microbiologie de la Méditerranée, CNRS/Aix-Marseille Univ, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Clémentine Delan-Forino
- Laboratoire de Chimie Bactérienne, UMR 7283, Institut de Microbiologie de la Méditerranée, CNRS/Aix-Marseille Univ, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Elodie Foulquier
- Laboratoire de Chimie Bactérienne, UMR 7283, Institut de Microbiologie de la Méditerranée, CNRS/Aix-Marseille Univ, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Hakima Lakhal
- Laboratoire de Chimie Bactérienne, UMR 7283, Institut de Microbiologie de la Méditerranée, CNRS/Aix-Marseille Univ, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Frédérique Pompeo
- Laboratoire de Chimie Bactérienne, UMR 7283, Institut de Microbiologie de la Méditerranée, CNRS/Aix-Marseille Univ, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| |
Collapse
|
6
|
Matavacas J, Hallgren J, von Wachenfeldt C. Bacillus subtilis forms twisted cells with cell wall integrity defects upon removal of the molecular chaperones DnaK and trigger factor. Front Microbiol 2023; 13:988768. [PMID: 36726573 PMCID: PMC9886141 DOI: 10.3389/fmicb.2022.988768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
The protein homeostasis network ensures a proper balance between synthesis, folding, and degradation of all cellular proteins. DnaK and trigger factor (TF) are ubiquitous bacterial molecular chaperones that assist in protein folding, as well as preventing protein misfolding and aggregation. In Escherichia coli, DnaK and TF possess partially overlapping functions. Their combined depletion results in proteostasis collapse and is synthetically lethal at temperatures above 30°C. To increase our understanding on how proteostasis is maintained in Gram-positive bacteria, we have investigated the physiological effects of deleting dnaK and tig (encoding for DnaK and TF) in Bacillus subtilis. We show that combined deletion of dnaK and tig in B. subtilis is non-lethal, but causes a severe pleiotropic phenotype, including an aberrant twisted and filamentous cell morphology, as well as decreased tolerance to heat and to cell wall active antibiotics and hydrolytic enzymes, indicative of defects in cell wall integrity. In addition, cells lacking DnaK and TF have a much smaller colony size due to defects in motility. Despite these physiological changes, we observed no major compromises in important cellular processes such as cell growth, FtsZ localization and division and only moderate defects in spore formation. Finally, through suppressor analyses, we found that the wild-type cell shape can be partially restored by mutations in genes involved in metabolism or in other diverse cellular processes.
Collapse
|
7
|
Schulz LM, Rothe P, Halbedel S, Gründling A, Rismondo J. Imbalance of peptidoglycan biosynthesis alters the cell surface charge of Listeria monocytogenes. Cell Surf 2022; 8:100085. [PMID: 36304571 PMCID: PMC9593813 DOI: 10.1016/j.tcsw.2022.100085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 02/09/2023] Open
Abstract
The bacterial cell wall is composed of a thick layer of peptidoglycan and cell wall polymers, which are either embedded in the membrane or linked to the peptidoglycan backbone and referred to as lipoteichoic acid (LTA) and wall teichoic acid (WTA), respectively. Modifications of the peptidoglycan or WTA backbone can alter the susceptibility of the bacterial cell towards cationic antimicrobials and lysozyme. The human pathogen Listeria monocytogenes is intrinsically resistant towards lysozyme, mainly due to deacetylation and O-acetylation of the peptidoglycan backbone via PgdA and OatA. Recent studies identified additional factors, which contribute to the lysozyme resistance of this pathogen. One of these is the predicted ABC transporter, EslABC. An eslB mutant is hyper-sensitive towards lysozyme, likely due to the production of thinner and less O-acetylated peptidoglycan. Using a suppressor screen, we show here that suppression of eslB phenotypes could be achieved by enhancing peptidoglycan biosynthesis, reducing peptidoglycan hydrolysis or alterations in WTA biosynthesis and modification. The lack of EslB also leads to a higher negative surface charge, which likely stimulates the activity of peptidoglycan hydrolases and lysozyme. Based on our results, we hypothesize that the portion of cell surface exposed WTA is increased in the eslB mutant due to the thinner peptidoglycan layer and that latter one could be caused by an impairment in UDP-N-acetylglucosamine (UDP-GlcNAc) production or distribution.
Collapse
Affiliation(s)
- Lisa Maria Schulz
- Department of General Microbiology, Institute of Microbiology and Genetics, GZMB, Georg-August University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Patricia Rothe
- FG11, Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Burgstraße 37, 38855 Wernigerode, Germany
| | - Sven Halbedel
- FG11, Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Burgstraße 37, 38855 Wernigerode, Germany
- Institute for Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Angelika Gründling
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jeanine Rismondo
- Department of General Microbiology, Institute of Microbiology and Genetics, GZMB, Georg-August University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
8
|
Zhang J, Zhu B, Xu X, Liu Y, Li Q, Li Y, Lu F. Remodeling Bacillus amyloliquefaciens Cell Wall Rigidity to Reduce Cell Lysis and Increase the Yield of Heterologous Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10552-10562. [PMID: 35984403 DOI: 10.1021/acs.jafc.2c04454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacillus amyloliquefaciens has great potential as a host for heterologous protein production, but its severe autolytic behavior has precluded its industrial application to date. Because d,l-endopeptidase activity-guided cell wall rigidity is considered essential for autolysis resistance, we investigated the effects of d,l-endopeptidase genes lytE, lytF, cwlO, and cwlS play on the growth, lysis, and morphology remodeling of B. amyloliquefaciens strain TCCC11018. Individual and combinatorial deletion of lytE, lytF, and cwlS enhanced the cell growth and delayed cell lysis. For the best mutant with the lytF and cwlS double deletion, the viable cell number at 24 h increased by 11.90% and the cell wall thickness at 6 h increased by 25.87%. Transcriptomic and proteomic analyses indicated that the improvement was caused by enhanced peptidoglycan synthesis. With the lytF and cwlS double deletion, the extracellular green fluorescent protein and phospholipase D expression levels increased by 113 and 55.89%, respectively. This work broadens our understanding of the relationship between d,l-endopeptidases and B. amyloliquefaciens cell characteristics, which provides an effective strategy to improve the heterologous protein expression in B. amyloliquefaciens-based cell factories.
Collapse
Affiliation(s)
- Jinfang Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Baoyue Zhu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xiaojian Xu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Qinggang Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yu Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
9
|
Linoleic Acid-Based Transferosomes for Topical Ocular Delivery of Cyclosporine A. Pharmaceutics 2022; 14:pharmaceutics14081695. [PMID: 36015321 PMCID: PMC9412891 DOI: 10.3390/pharmaceutics14081695] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Delivering high-molecular-weight hydrophobic peptides, such as cyclosporine A, across the corneal epithelium remains a challenge that is complicated by other physio-anatomical ocular structures that limit the ocular bioavailability of such peptides. Transferosomes have previously been used to improve transdermal permeability, and have the potential for improving the ocular corneal permeability of applicable drugs. In this study, transferosomes for the potential ocular delivery of cyclosporine A were investigated. Linoleic acid was evaluated for its effect on the stability of the transferosomes and was substituted for a portion of the cholesterol in the vesicles. Additionally, Span® 80 and Tween® 80 were evaluated for their effect on transferosome flexibility and toxicity to ocular cells as edge activators. Attenuated Total Reflectance–Fourier Transform Infrared spectroscopy (ATF-FTIR), differential scanning calorimetry (DSC), and dynamic light scattering (DLS) were used to evaluate the physicochemical parameters of the blank and the cyclosporine A-loaded transferosomes. Cyclosporine A release and corneal permeability were studied in vitro and in a New Zealand albino rabbit corneal model, respectively. The linoleic acid contributed to improved stability and the nano-size of the transferosomes. The Tween®-based formulation was preferred on the basis of a more favorable toxicity profile, as the difference in their corneal permeability was not significant. There was an initial burst release of cyclosporine A in the first 24 h that plateaued over one week. The Tween®-based formulation had a flux of 0.78 µg/cm2/h. The prepared transferosomes demonstrated biocompatibility in the ocular cell line, adequately encapsulated cyclosporine A, ensured the corneal permeability of the enclosed drug, and were stable over the period of investigation of 4 months at −20 °C.
Collapse
|
10
|
Role of serine/threonine protein phosphatase PrpN in the life cycle of Bacillus anthracis. PLoS Pathog 2022; 18:e1010729. [PMID: 35913993 PMCID: PMC9371265 DOI: 10.1371/journal.ppat.1010729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 08/11/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
Reversible protein phosphorylation at serine/threonine residues is one of the most common protein modifications, widely observed in all kingdoms of life. The catalysts controlling this modification are specific serine/threonine kinases and phosphatases that modulate various cellular pathways ranging from growth to cellular death. Genome sequencing and various omics studies have led to the identification of numerous serine/threonine kinases and cognate phosphatases, yet the physiological relevance of many of these proteins remain enigmatic. In Bacillus anthracis, only one ser/thr phosphatase, PrpC, has been functionally characterized; it was reported to be non-essential for bacterial growth and survival. In the present study, we characterized another ser/thr phosphatase (PrpN) of B. anthracis by various structural and functional approaches. To examine its physiological relevance in B. anthracis, a null mutant strain of prpN was generated and shown to have defects in sporulation and reduced synthesis of toxins (PA and LF) and the toxin activator protein AtxA. We also identified CodY, a global transcriptional regulator, as a target of PrpN and ser/thr kinase PrkC. CodY phosphorylation strongly controlled its binding to the promoter region of atxA, as shown using phosphomimetic and phosphoablative mutants. In nutshell, the present study reports phosphorylation-mediated regulation of CodY activity in the context of anthrax toxin synthesis in B. anthracis by a previously uncharacterized ser/thr protein phosphatase–PrpN. Reversible protein phosphorylation at specific ser/thr residues causes conformational changes in the protein structure, thereby modulating its cellular activity. In B. anthracis, though the role of ser/thr phosphorylation is implicated in various cellular pathways including pathogenesis, till date only one STP (PrpC) has been functionally characterized. This manuscript reports functional characterization of another STP (PrpN) in B. anthracis and with the aid of a null mutant strain (BAS ΔprpN) we provide important insight regarding the role of PrpN in the life cycle of B. anthracis. We have also identified the global transcriptional regulator, CodY as a target of PrpN and PrkC, and for the first time showed the physiological relevance of CodY phosphorylation status in the regulation of anthrax toxin synthesis.
Collapse
|
11
|
Pseudomonas aeruginosa Alters Peptidoglycan Composition under Nutrient Conditions Resembling Cystic Fibrosis Lung Infections. mSystems 2022; 7:e0015622. [PMID: 35545925 PMCID: PMC9239049 DOI: 10.1128/msystems.00156-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epidemic strains of Pseudomonas aeruginosa are highly virulent opportunistic pathogens with increased transmissibility and enhanced antimicrobial resistance. Understanding the cellular mechanisms behind this heightened virulence and resistance is critical. Peptidoglycan (PG) is an integral component of P. aeruginosa cells that is essential to its survival and a target for antimicrobials. Here, we examined the global PG composition of two P. aeruginosa epidemic strains, LESB58 and LESlike1, and compared them to the common laboratory strains PAO1 and PA14. We also examined changes in PG composition when the strains were cultured under nutrient conditions that resembled cystic fibrosis lung infections. We identified 448 unique muropeptides and provide the first evidence for stem peptides modified with O-methylation, meso-diaminopimelic acid (mDAP) deamination, and novel substitutions of mDAP residues within P. aeruginosa PG. Our results also present the first evidence for both d,l- and l,d-endopeptidase activity on the PG sacculus of a Gram-negative organism. The PG composition of the epidemic strains varied significantly when grown under conditions resembling cystic fibrosis (CF) lung infections, showing increases in O-methylated stem peptides and decreases in l,d-endopeptidase activity as well as an increased abundance of de-N-acetylated sugars and l,d-transpeptidase activity, which are related to bacterial virulence and antibiotic resistance, respectively. We also identified strain-specific changes where LESlike1 increased the addition of unique amino acids to the terminus of the stem peptide and LESB58 increased amidase activity. Overall, this study demonstrates that P. aeruginosa PG composition is primarily influenced by nutrient conditions that mimic the CF lung; however, inherent strain-to-strain differences also exist. IMPORTANCE Using peptidoglycomics to examine the global composition of the peptidoglycan (PG) allows insights into the enzymatic activity that functions on this important biopolymer. Changes within the PG structure have implications for numerous physiological processes, including virulence and antimicrobial resistance. The identification of highly unique PG modifications illustrates the complexity of this biopolymer in Pseudomonas aeruginosa. Analyzing the PG composition of clinical P. aeruginosa epidemic strains provides insights into the increased virulence and antimicrobial resistance of these difficult-to-eradicate infections.
Collapse
|
12
|
Zhang TC, Zhang J, Chen SC, Saada B. A Novel Prediction Model for Brain Glioma Image Segmentation Based on the Theory of Bose-Einstein Condensate. Front Med (Lausanne) 2022; 9:794125. [PMID: 35372409 PMCID: PMC8971582 DOI: 10.3389/fmed.2022.794125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/14/2022] [Indexed: 11/26/2022] Open
Abstract
Background The input image of a blurry glioma image segmentation is, usually, very unclear. It is difficult to obtain the accurate contour line of image segmentation. The main challenge facing the researchers is to correctly determine the area where the points on the contour line belong to the glioma image. This article highlights the mechanism of formation of glioma and provides an image segmentation prediction model to assist in the accurate division of glioma contour points. The proposed prediction model of segmentation associated with the process of the formation of glioma is innovative and challenging. Bose-Einstein Condensate (BEC) is a microscopic quantum phenomenon in which atoms condense to the ground state of energy as the temperature approaches absolute zero. In this article, we propose a BEC kernel function and a novel prediction model based on the BEC kernel to detect the relationship between the process of the BEC and the formation of a brain glioma. Furthermore, the theoretical derivation and proof of the prediction model are given from micro to macro through quantum mechanics, wave, oscillation of glioma, and statistical distribution of laws. The prediction model is a distinct segmentation model that is guided by BEC theory for blurry glioma image segmentation. Results Our approach is based on five tests. The first three tests aimed at confirming the measuring range of T and μ in the BEC kernel. The results are extended from −10 to 10, approximating the standard range to T ≤ 0, and μ from 0 to 6.7. Tests 4 and 5 are comparison tests. The comparison in Test 4 was based on various established cluster methods. The results show that our prediction model in image evaluation parameters of P, R, and F is the best amongst all the existent ten forms except for only one reference with the mean value of F that is between 0.88 and 0.93, while our approach returns between 0.85 and 0.99. Test 5 aimed to further compare our results, especially with CNN (Convolutional Neural Networks) methods, by challenging Brain Tumor Segmentation (BraTS) and clinic patient datasets. Our results were also better than all reference tests. In addition, the proposed prediction model with the BEC kernel is feasible and has a comparative validity in glioma image segmentation. Conclusions Theoretical derivation and experimental verification show that the prediction model based on the BEC kernel can solve the problem of accurate segmentation of blurry glioma images. It demonstrates that the BEC kernel is a more feasible, valid, and accurate approach than a lot of the recent year segmentation methods. It is also an advanced and innovative model of prediction deducing from micro BEC theory to macro glioma image segmentation.
Collapse
Affiliation(s)
- Tian Chi Zhang
- School of Information Science and Engineering, Chongqing Jiaotong University, Chongqing, China
| | - Jing Zhang
- School of Information Science and Engineering, University of Jinan, Jinan, China
- Shandong Provincial Key Laboratory of Network-Based Intelligent Computing, Jinan, China
- *Correspondence: Jing Zhang
| | - Shou Cun Chen
- School of Information Science and Engineering, University of Jinan, Jinan, China
- Shandong Provincial Key Laboratory of Network-Based Intelligent Computing, Jinan, China
| | - Bacem Saada
- Cancer Institute, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
13
|
Magnesium rescues the morphology of Bacillus subtilis mreB mutants through its inhibitory effect on peptidoglycan hydrolases. Sci Rep 2022; 12:1137. [PMID: 35064120 PMCID: PMC8782873 DOI: 10.1038/s41598-021-04294-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/06/2021] [Indexed: 02/04/2023] Open
Abstract
Cell wall homeostasis in bacteria is tightly regulated by balanced synthesis and degradation of peptidoglycan (PG), allowing cells to expand their sacculus during growth while maintaining physical integrity. In rod-shaped bacteria, actin-like MreB proteins are key players of the PG elongation machinery known as the Rod complex. In the Gram-positive model bacterium Bacillus subtilis depletion of the essential MreB leads to loss of rod shape and cell lysis. However, millimolar concentrations of magnesium in the growth medium rescue the viability and morphological defects of mreB mutants by an unknown mechanism. Here, we used a combination of cytological, biochemical and biophysical approaches to investigate the cell surface properties of mreB null mutant cells and the interactions of Mg2+ with the cell wall of B. subtilis. We show that ∆mreB cells have rougher and softer surfaces, and changes in PG composition indicative of increased DL- and DD-endopeptidase activities as well as increased deacetylation of the sugar moieties. Increase in DL-endopeptidase activity is mitigated by excess Mg2+ while DD-endopeptidase activity remains high. Visualization of PG degradation in pulse-chase experiments showed anisotropic PG hydrolase activity along the sidewalls of ∆mreB cells, in particular at the sites of increased cell width and bulging, while PG synthesis remained isotropic. Overall, our data support a model in which divalent cations maintain rod shape in ∆mreB cells by inhibiting PG hydrolases, possibly through the formation of crosslinks with carboxyl groups of the PG meshwork that affect the capacity of PG hydrolases to act on their substrate.
Collapse
|
14
|
Liu P, Liu H, Semenec L, Yuan D, Yan S, Cain AK, Li M. Length-based separation of Bacillus subtilis bacterial populations by viscoelastic microfluidics. MICROSYSTEMS & NANOENGINEERING 2022; 8:7. [PMID: 35127130 PMCID: PMC8766588 DOI: 10.1038/s41378-021-00333-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
In this study, we demonstrated the label-free continuous separation and enrichment of Bacillus subtilis populations based on length using viscoelastic microfluidics. B. subtilis, a gram-positive, rod-shaped bacterium, has been widely used as a model organism and an industrial workhorse. B. subtilis can be arranged in different morphological forms, such as single rods, chains, and clumps, which reflect differences in cell types, phases of growth, genetic variation, and changing environmental factors. The ability to prepare B. subtilis populations with a uniform length is important for basic biological studies and efficient industrial applications. Here, we systematically investigated how flow rate ratio, poly(ethylene oxide) (PEO) concentration, and channel length affected the length-based separation of B. subtilis cells. The lateral positions of B. subtilis cells with varying morphologies in a straight rectangular microchannel were found to be dependent on cell length under the co-flow of viscoelastic and Newtonian fluids. Finally, we evaluated the ability of the viscoelastic microfluidic device to separate the two groups of B. subtilis cells by length (i.e., 1-5 μm and >5 μm) in terms of extraction purity (EP), extraction yield (EY), and enrichment factor (EF) and confirmed that the device could separate heterogeneous populations of bacteria using elasto-inertial effects.
Collapse
Affiliation(s)
- Ping Liu
- Suqian University, Suqian, 223800 China
- School of Engineering, Macquarie University, Sydney, NSW 2109 Australia
| | - Hangrui Liu
- Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 Australia
| | - Lucie Semenec
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Science, Macquarie University, Sydney, NSW 2109 Australia
| | - Dan Yuan
- Centre for Regional and Rural Futures, Deakin University, Geelong, VIC 3216 Australia
| | - Sheng Yan
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| | - Amy K. Cain
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Science, Macquarie University, Sydney, NSW 2109 Australia
| | - Ming Li
- School of Engineering, Macquarie University, Sydney, NSW 2109 Australia
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW 2109 Australia
| |
Collapse
|
15
|
Delisle J, Cordier B, Audebert S, Pophillat M, Cluzel C, Espinosa L, Grangeasse C, Galinier A, Doan T. Characterization of TseB: A new actor in cell wall elongation in Bacillus subtilis. Mol Microbiol 2021; 116:1099-1112. [PMID: 34411374 DOI: 10.1111/mmi.14798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022]
Abstract
Penicillin-binding proteins (PBPs) are crucial enzymes of peptidoglycan assembly and targets of β-lactam antibiotics. However, little is known about their regulation. Recently, membrane proteins were shown to regulate the bifunctional transpeptidases/glycosyltransferases aPBPs in some bacteria. However, up to now, regulators of monofunctional transpeptidases bPBPs have yet to be revealed. Here, we propose that TseB could be such a PBP regulator. This membrane protein was previously found to suppress tetracycline sensitivity of a Bacillus subtilis strain deleted for ezrA, a gene encoding a regulator of septation ring formation. In this study, we show that TseB is required for B. subtilis normal cell shape, tseB mutant cells being shorter and wider than wild-type cells. We observed that TseB interacts with PBP2A, a monofunctional transpeptidase. While TseB is not required for PBP2A activity, stability, and localization, we show that the overproduction of PBP2A is deleterious in the absence of TseB. In addition, we showed that TseB is necessary not only for efficient cell wall elongation during exponential phase but also during spore outgrowth, as it was also observed for PBP2A. Altogether, our results suggest that TseB is a new member of the elongasome that regulates PBP2A function during cell elongation and spore germination.
Collapse
Affiliation(s)
- Jordan Delisle
- Laboratoire de Chimie Bactérienne, UMR 7283, CNRS/Aix-Marseille Univ, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Baptiste Cordier
- Laboratoire de Chimie Bactérienne, UMR 7283, CNRS/Aix-Marseille Univ, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Stéphane Audebert
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Matthieu Pophillat
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Caroline Cluzel
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS/Université Lyon I, Lyon, France
| | - Leon Espinosa
- Laboratoire de Chimie Bactérienne, UMR 7283, CNRS/Aix-Marseille Univ, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Université Lyon I, Lyon, France
| | - Anne Galinier
- Laboratoire de Chimie Bactérienne, UMR 7283, CNRS/Aix-Marseille Univ, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Thierry Doan
- Laboratoire de Chimie Bactérienne, UMR 7283, CNRS/Aix-Marseille Univ, Institut de Microbiologie de la Méditerranée, Marseille, France
| |
Collapse
|
16
|
Galinier A, Foulquier E, Pompeo F. Metabolic Control of Cell Elongation and Cell Division in Bacillus subtilis. Front Microbiol 2021; 12:697930. [PMID: 34248920 PMCID: PMC8270655 DOI: 10.3389/fmicb.2021.697930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/31/2021] [Indexed: 11/18/2022] Open
Abstract
To survive and adapt to changing nutritional conditions, bacteria must rapidly modulate cell cycle processes, such as doubling time or cell size. Recent data have revealed that cellular metabolism is a central regulator of bacterial cell cycle. Indeed, proteins that can sense precursors or metabolites or enzymes, in addition to their enzymatic activities involved in metabolism, were shown to directly control cell cycle processes in response to changes in nutrient levels. Here we focus on cell elongation and cell division in the Gram-positive rod-shaped bacterium Bacillus subtilis and we report evidences linking these two cellular processes to environmental nutritional availability and thus metabolic cellular status.
Collapse
Affiliation(s)
- Anne Galinier
- Laboratoire de Chimie Bactérienne, UMR 7283, CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Elodie Foulquier
- Laboratoire de Chimie Bactérienne, UMR 7283, CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Frédérique Pompeo
- Laboratoire de Chimie Bactérienne, UMR 7283, CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, Marseille, France
| |
Collapse
|
17
|
Fisher JF, Mobashery S. β-Lactams against the Fortress of the Gram-Positive Staphylococcus aureus Bacterium. Chem Rev 2021; 121:3412-3463. [PMID: 33373523 PMCID: PMC8653850 DOI: 10.1021/acs.chemrev.0c01010] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biological diversity of the unicellular bacteria-whether assessed by shape, food, metabolism, or ecological niche-surely rivals (if not exceeds) that of the multicellular eukaryotes. The relationship between bacteria whose ecological niche is the eukaryote, and the eukaryote, is often symbiosis or stasis. Some bacteria, however, seek advantage in this relationship. One of the most successful-to the disadvantage of the eukaryote-is the small (less than 1 μm diameter) and nearly spherical Staphylococcus aureus bacterium. For decades, successful clinical control of its infection has been accomplished using β-lactam antibiotics such as the penicillins and the cephalosporins. Over these same decades S. aureus has perfected resistance mechanisms against these antibiotics, which are then countered by new generations of β-lactam structure. This review addresses the current breadth of biochemical and microbiological efforts to preserve the future of the β-lactam antibiotics through a better understanding of how S. aureus protects the enzyme targets of the β-lactams, the penicillin-binding proteins. The penicillin-binding proteins are essential enzyme catalysts for the biosynthesis of the cell wall, and understanding how this cell wall is integrated into the protective cell envelope of the bacterium may identify new antibacterials and new adjuvants that preserve the efficacy of the β-lactams.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| |
Collapse
|
18
|
Pazos M, Vollmer W. Regulation and function of class A Penicillin-binding proteins. Curr Opin Microbiol 2021; 60:80-87. [PMID: 33611146 DOI: 10.1016/j.mib.2021.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/09/2021] [Accepted: 01/22/2021] [Indexed: 01/14/2023]
Abstract
Most bacteria surround their cell membrane with a peptidoglycan sacculus that counteracts the turgor and maintains the shape of the cell. Class A PBPs are bi-functional glycosyltransferase-transpeptidases that polymerize glycan chains and cross-link peptides. They have a major contribution to the total peptidoglycan synthesized during cell growth and cell division. In recent years it became apparent that class A PBPs participate in multiple protein? protein interactions and that some of these regulate their activities. In this opinion article, we review and discuss the role of class A PBPs in peptidoglycan growth and repair. We hypothesize that class A PBP function is essential in walled bacteria unless they have (a) SEDS protein(s) capable of replacing their function.
Collapse
Affiliation(s)
- Manuel Pazos
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, NE2 4AX, Newcastle upon Tyne, United Kingdom
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, NE2 4AX, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|