1
|
Retter TL, Eraßmy L, Schiltz C. Identifying conceptual neural responses to symbolic numerals. Proc Biol Sci 2024; 291:20240589. [PMID: 38919064 DOI: 10.1098/rspb.2024.0589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/24/2024] [Indexed: 06/27/2024] Open
Abstract
The goal of measuring conceptual processing in numerical cognition is distanced by the possibility that neural responses to symbolic numerals are influenced by physical stimulus confounds. Here, we targeted conceptual responses to parity (even versus odd), using electroencephalogram (EEG) frequency-tagging with a symmetry/asymmetry design. Arabic numerals (2-9) were presented at 7.5 Hz in 50 s sequences; odd and even numbers were alternated to target differential, 'asymmetry' responses to parity at 3.75 Hz (7.5 Hz/2). Parity responses were probed with four different stimulus sets, increasing in intra-numeral stimulus variability, and with two control conditions composed of non-conceptual numeral alternations. Significant asymmetry responses were found over the occipitotemporal cortex to all conditions, even for the arbitrary controls. The large physical-differences control condition elicited the largest response in the stimulus set with the lowest variability (one font). Only in the stimulus set with the highest variability (20 drawn, coloured exemplars/numeral) did the response to parity surpass both control conditions. These findings show that physical differences across small sets of Arabic numerals can strongly influence, and even account for, automatic brain responses. However, carefully designed control conditions and highly variable stimulus sets may be used towards identifying truly conceptual neural responses.
Collapse
Affiliation(s)
- Talia L Retter
- Department of Behavioural and Cognitive Sciences, Institute of Cognitive Science & Assessment, University of Luxembourg , Esch-sur-Alzette, Luxembourg
| | - Lucas Eraßmy
- Department of Behavioural and Cognitive Sciences, Institute of Cognitive Science & Assessment, University of Luxembourg , Esch-sur-Alzette, Luxembourg
| | - Christine Schiltz
- Department of Behavioural and Cognitive Sciences, Institute of Cognitive Science & Assessment, University of Luxembourg , Esch-sur-Alzette, Luxembourg
| |
Collapse
|
2
|
Retter TL, Eraßmy L, Schiltz C. Categorical consistency facilitates implicit learning of color-number associations. PLoS One 2023; 18:e0288224. [PMID: 37428745 PMCID: PMC10332609 DOI: 10.1371/journal.pone.0288224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023] Open
Abstract
In making sense of the environment, we implicitly learn to associate stimulus attributes that frequently occur together. Is such learning favored for categories over individual items? Here, we introduce a novel paradigm for directly comparing category- to item-level learning. In a category-level experiment, even numbers (2,4,6,8) had a high-probability of appearing in blue, and odd numbers (3,5,7,9) in yellow. Associative learning was measured by the relative performance on trials with low-probability (p = .09) to high-probability (p = .91) number colors. There was strong evidence for associative learning: low-probability performance was impaired (40ms RT increase and 8.3% accuracy decrease relative to high-probability). This was not the case in an item-level experiment with a different group of participants, in which high-probability colors were non-categorically assigned (blue: 2,3,6,7; yellow: 4,5,8,9; 9ms RT increase and 1.5% accuracy increase). The categorical advantage was upheld in an explicit color association report (83% accuracy vs. 43% at the item-level). These results support a conceptual view of perception and suggest empirical bases of categorical, not item-level, color labeling of learning materials.
Collapse
Affiliation(s)
- Talia L. Retter
- Department of Behavioral and Cognitive Sciences, Institute of Cognitive Science & Assessment, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Lucas Eraßmy
- Department of Behavioral and Cognitive Sciences, Institute of Cognitive Science & Assessment, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Christine Schiltz
- Department of Behavioral and Cognitive Sciences, Institute of Cognitive Science & Assessment, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
3
|
Gennari G, Dehaene S, Valera C, Dehaene-Lambertz G. Spontaneous supra-modal encoding of number in the infant brain. Curr Biol 2023; 33:1906-1915.e6. [PMID: 37071994 DOI: 10.1016/j.cub.2023.03.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/30/2023] [Accepted: 03/21/2023] [Indexed: 04/20/2023]
Abstract
The core knowledge hypothesis postulates that infants automatically analyze their environment along abstract dimensions, including numbers. According to this view, approximate numbers should be encoded quickly, pre-attentively, and in a supra-modal manner by the infant brain. Here, we directly tested this idea by submitting the neural responses of sleeping 3-month-old infants, measured with high-density electroencephalography (EEG), to decoders designed to disentangle numerical and non-numerical information. The results show the emergence, in approximately 400 ms, of a decodable number representation, independent of physical parameters, that separates auditory sequences of 4 vs. 12 tones and generalizes to visual arrays of 4 vs. 12 objects. Thus, the infant brain contains a number code that transcends sensory modality, sequential or simultaneous presentation, and arousal state.
Collapse
Affiliation(s)
- Giulia Gennari
- Cognitive Neuroimaging Unit U992, Institut National de la Santé et de la Recherche Médicale, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Direction de la Recherche Fondamentale/Institut Joliot, Centre National de la Recherche Scientifique ERL9003, NeuroSpin Center, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA.
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit U992, Institut National de la Santé et de la Recherche Médicale, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Direction de la Recherche Fondamentale/Institut Joliot, Centre National de la Recherche Scientifique ERL9003, NeuroSpin Center, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; Collège de France, Université Paris Sciences Lettres (PSL), 75005 Paris, France
| | - Chanel Valera
- Cognitive Neuroimaging Unit U992, Institut National de la Santé et de la Recherche Médicale, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Direction de la Recherche Fondamentale/Institut Joliot, Centre National de la Recherche Scientifique ERL9003, NeuroSpin Center, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Ghislaine Dehaene-Lambertz
- Cognitive Neuroimaging Unit U992, Institut National de la Santé et de la Recherche Médicale, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Direction de la Recherche Fondamentale/Institut Joliot, Centre National de la Recherche Scientifique ERL9003, NeuroSpin Center, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Marlair C, Crollen V, Lochy A. A shared numerical magnitude representation evidenced by the distance effect in frequency-tagging EEG. Sci Rep 2022; 12:14559. [PMID: 36028649 PMCID: PMC9418351 DOI: 10.1038/s41598-022-18811-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/19/2022] [Indexed: 11/09/2022] Open
Abstract
Humans can effortlessly abstract numerical information from various codes and contexts. However, whether the access to the underlying magnitude information relies on common or distinct brain representations remains highly debated. Here, we recorded electrophysiological responses to periodic variation of numerosity (every five items) occurring in rapid streams of numbers presented at 6 Hz in randomly varying codes—Arabic digits, number words, canonical dot patterns and finger configurations. Results demonstrated that numerical information was abstracted and generalized over the different representation codes by revealing clear discrimination responses (at 1.2 Hz) of the deviant numerosity from the base numerosity, recorded over parieto-occipital electrodes. Crucially, and supporting the claim that discrimination responses reflected magnitude processing, the presentation of a deviant numerosity distant from the base (e.g., base “2” and deviant “8”) elicited larger right-hemispheric responses than the presentation of a close deviant numerosity (e.g., base “2” and deviant “3”). This finding nicely represents the neural signature of the distance effect, an interpretation further reinforced by the clear correlation with individuals’ behavioral performance in an independent numerical comparison task. Our results therefore provide for the first time unambiguously a reliable and specific neural marker of a magnitude representation that is shared among several numerical codes.
Collapse
Affiliation(s)
- Cathy Marlair
- Institute of Psychology (IPSY) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, Place Cardinal Mercier 10, 1348, Louvain-la-Neuve, Belgium.
| | - Virginie Crollen
- Institute of Psychology (IPSY) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, Place Cardinal Mercier 10, 1348, Louvain-la-Neuve, Belgium
| | - Aliette Lochy
- Institute of Psychology (IPSY) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, Place Cardinal Mercier 10, 1348, Louvain-la-Neuve, Belgium.,Department of Behavioral and Cognitive Sciences, Faculty of Humanities, Social and Educational Sciences, Institute of Cognitive Science and Assessment, Université du Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
5
|
Automatic integration of numerical formats examined with frequency-tagged EEG. Sci Rep 2021; 11:21405. [PMID: 34725370 PMCID: PMC8560945 DOI: 10.1038/s41598-021-00738-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/13/2021] [Indexed: 01/23/2023] Open
Abstract
How humans integrate and abstract numerical information across different formats is one of the most debated questions in human cognition. We addressed the neuronal signatures of the numerical integration using an EEG technique tagged at the frequency of visual stimulation. In an oddball design, participants were stimulated with standard sequences of numbers (< 5) depicted in single (digits, dots, number words) or mixed notation (dots-digits, number words-dots, digits-number words), presented at 10 Hz. Periodically, a deviant stimulus (> 5) was inserted at 1.25 Hz. We observed significant oddball amplitudes for all single notations, showing for the first time using this EEG technique, that the magnitude information is spontaneously and unintentionally abstracted, irrespectively of the numerical format. Significant amplitudes were also observed for digits-number words and number words-dots, but not for digits-dots, suggesting an automatic integration across some numerical formats. These results imply that direct and indirect neuro-cognitive links exist across the different numerical formats.
Collapse
|