1
|
Ser Z, Gu Y, Yap J, Lim YT, Wang SM, Hamidinia M, Murali TM, Kumar R, Gascoigne NR, MacAry PA, Sobota RM. Hybrid structural modeling of alloantibody binding to human leukocyte antigen with rapid and reproducible cross-linking mass spectrometry. CELL REPORTS METHODS 2023; 3:100569. [PMID: 37751693 PMCID: PMC10545907 DOI: 10.1016/j.crmeth.2023.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/05/2023] [Accepted: 08/07/2023] [Indexed: 09/28/2023]
Abstract
Alloantibody recognition of donor human leukocyte antigen (HLA) is associated with poor clinical transplantation outcomes. However, the molecular and structural basis for the alloantibody-HLA interaction is not well understood. Here, we used a hybrid structural modeling approach on a previously studied alloantibody-HLA interacting pair with inputs from ab initio, in silico, and in vitro data. Highly reproducible cross-linking mass spectrometry data were obtained with both discovery- and targeted mass spectrometry-based approaches approaches. The cross-link information was then used together with predicted antibody Fv structure, predicted antibody paratope, and in silico-predicted interacting surface to model the antibody-HLA interaction. This hybrid structural modeling approach closely recapitulates the key interacting residues from a previously solved crystal structure of an alloantibody-HLA-A∗11:01 pair. These results suggest that a predictive-based hybrid structural modeling approach supplemented with cross-linking mass spectrometry data can provide functionally relevant structural models to understand the structural basis of antibody-HLA mismatch in transplantation.
Collapse
Affiliation(s)
- Zheng Ser
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore 138673, Singapore
| | - Yue Gu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| | - Jiawei Yap
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| | - Yan Ting Lim
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore 138673, Singapore
| | - Shi Mei Wang
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore 138673, Singapore
| | - Maryam Hamidinia
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| | - Tanusya Murali Murali
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| | - Ragini Kumar
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore 138673, Singapore
| | - Nicholas Rj Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| | - Paul A MacAry
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore 138673, Singapore.
| |
Collapse
|
2
|
Gniewkiewicz M, Czerwinska K, Zielniok K, Durlik M. Association of Circulating Anti-HLA Donor-Specific Antibodies and Their Characteristics, including C1q-Binding Capacity, in Kidney Transplant Recipients with Long-Term Renal Graft Outcomes. J Clin Med 2023; 12:jcm12041312. [PMID: 36835848 PMCID: PMC9962721 DOI: 10.3390/jcm12041312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023] Open
Abstract
Post-transplant antihuman leukocyte antigen donor-specific antibodies (anti-HLA DSAs) monitoring in kidney transplant recipients remains unclear and is currently under investigation. The pathogenicity of anti-HLA DSAs is determined by antibody classes, specificity, mean fluorescent intensity (MFI), C1q-binding capacity, and IgG subclasses. The aim of this study was to investigate the association of circulating DSAs and their characteristics with renal allograft long-term outcomes. The study included 108 consecutive patients from our transplant center who underwent kidney allograft biopsy between November 2018 and November 2020, 3 to 24 months after kidney transplantation. At the time of biopsy, patients' sera were collected for analysis of anti-HLA DSAs. Patients were followed for a median time of 39.0 months (Q1-Q3, 29.8-45.0). Detection of anti-HLA DSAs at the time of biopsy (HR = 5.133, 95% CI 2.150-12.253, p = 0.0002) and their C1q-binding capacity (HR = 14.639, 95% CI 5.320-40.283, p ≤ 0.0001) were independent predictors of the composite of sustained 30% reduction from estimated glomerular filtration rate or death-censored graft failure. Identification of anti-HLA DSAs and their C1q-binding capacity could be useful in identifying kidney transplant recipients at risk for inferior renal allograft function and graft failure. Analysis of C1q is noninvasive, accessible, and should be considered in clinical practice in post-transplant monitoring.
Collapse
Affiliation(s)
- Michal Gniewkiewicz
- Department of Transplantation Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
- Correspondence:
| | - Katarzyna Czerwinska
- Department of Transplantation Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Katarzyna Zielniok
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Magdalena Durlik
- Department of Transplantation Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| |
Collapse
|
3
|
Phillpott M, Daga S, Higgins R, Lowe D, Krishnan N, Zehnder D, Briggs D, Khovanova N. Dynamic Behaviour of Donor Specific Antibodies in the Early Period Following HLA Incompatible Kidney Transplantation. Transpl Int 2022; 35:10128. [PMID: 35516975 PMCID: PMC9062976 DOI: 10.3389/ti.2022.10128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/03/2022] [Indexed: 11/24/2022]
Abstract
In HLA-incompatible kidney transplantation, monitoring donor-specific antibodies (DSA) plays a crucial role in providing appropriate treatment and increases kidney survival times. This work aimed to determine if early post-transplant DSA dynamics inform graft outcome over and above other predictive factors. Eighty-eight cases were classified by unsupervised machine learning into five distinct DSA response groups: no response, fast modulation, slow modulation, rise to sustained and sustained. Fast modulation dynamics gave an 80% rate for early acute rejection, whereas the sustained group was associated with the lowest rejection rates (19%). In complete contrast, the five-year graft failure was lowest in the modulation groups (4–7%) and highest in the sustained groups (25–31%). Multivariable analysis showed that a higher pre-treatment DSA level, male gender and absence of early acute rejection were strongly associated with a sustained DSA response. The modulation group had excellent five-year outcomes despite higher rates of early rejection episodes. This work further develops an understanding of post-transplant DSA dynamics and their influence on graft survival following HLA-incompatible kidney transplantation.
Collapse
Affiliation(s)
- Mason Phillpott
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Sunil Daga
- St James's University Hospital, LTHT NHS Trust, Leeds, United Kingdom.,Warwick Medical School, University of Warwick, Coventry, United Kingdom.,NIHR Leeds In-Vitro Diagnostics Co-operative, Leeds, United Kingdom
| | - Rob Higgins
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - David Lowe
- Histocompatibility and Immunogenetics, NHS Blood and Transplant, Birmingham, United Kingdom
| | - Nithya Krishnan
- University Hospitals Coventry & Warwickshire NHS Trust, Coventry, United Kingdom
| | - Daniel Zehnder
- Warwick Medical School, University of Warwick, Coventry, United Kingdom.,North Cumbria Integrated Care NHS Trust, Carlisle, Cumbria, United Kingdom
| | - David Briggs
- Histocompatibility and Immunogenetics, NHS Blood and Transplant, Birmingham, United Kingdom.,Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Natalia Khovanova
- School of Engineering, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
4
|
Bezstarosti S, Bakker KH, Kramer CSM, de Fijter JW, Reinders MEJ, Mulder A, Claas FHJ, Heidt S. A Comprehensive Evaluation of the Antibody-Verified Status of Eplets Listed in the HLA Epitope Registry. Front Immunol 2022; 12:800946. [PMID: 35154076 PMCID: PMC8831796 DOI: 10.3389/fimmu.2021.800946] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/30/2021] [Indexed: 01/09/2023] Open
Abstract
Matching strategies based on HLA eplets instead of HLA antigens in solid organ transplantation may not only increase the donor pool for highly sensitized patients, but also decrease the incidence of de novo donor-specific antibody formation. However, since not all eplets are equally capable of inducing an immune response, antibody verification is needed to confirm their ability to be bound by antibodies, such that only clinically relevant eplets are considered. The HLA Epitope Registry has documented all theoretically defined HLA eplets along with their antibody verification status and has been the foundation for many clinical studies investigating eplet mismatch in transplantation. The verification methods for eplets in the Registry range from polyclonal sera from multi- and uni-parous women to murine and human monoclonal antibodies (mAbs), and antibodies purified by adsorption and elution from sera of HLA immunized individuals. The classification of antibody verification based on different methods for validation is problematic, since not all approaches represent the same level of evidence. In this study, we introduce a classification system to evaluate the level of evidence for the antibody-verified status of all eplets in the HLA Epitope Registry. We demonstrate that for a considerable number of eplets, the antibody-verified status is solely based on polyclonal serum reactivity of multiparous women or on reactivity of murine mAbs. Furthermore, we noted that a substantial proportion of patient sera analyses and human mAb data presented in the HLA Epitope Registry Database has never been published in a peer-reviewed journal. Therefore, we tested several unpublished human HLA-specific mAbs by luminex single antigen beads assay to analyze their HLA reactivity for eplet antibody verification. Although the majority of analyzed mAbs indeed verified their assigned eplets, this was not the case for a number of eplets. This comprehensive overview of evidence for antibody verification of eplets in the HLA Epitope Registry is instrumental for future investigations towards eplet immunogenicity and clinical studies considering antibody-verified eplet mismatch in transplantation and warrants further standardization of antibody verification using high quality data.
Collapse
Affiliation(s)
- Suzanne Bezstarosti
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, Netherlands
| | - Kim H. Bakker
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Johan W. de Fijter
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, Netherlands
| | - Marlies E. J. Reinders
- Department of Internal Medicine, Erasmus Medical Center Transplantation Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Arend Mulder
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Frans H. J. Claas
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Eurotransplant Reference Laboratory, Leiden, Netherlands
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Eurotransplant Reference Laboratory, Leiden, Netherlands
| |
Collapse
|