1
|
Huang Y, Jiang Y, Ji H, Gao Y, Xiao L, Zha W, Zhou J, Huang H. CHS-Ⅳa activates the IGF1R/PI3K signal pathway with inhibited pyroptosis of endometrial stromal cells and progress of endometriosis. Int Immunopharmacol 2024; 143:113527. [PMID: 39488924 DOI: 10.1016/j.intimp.2024.113527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/20/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chikusetsusaponin IVa (CHS IVa) as a natural extract from the Panax japonicus (T.Nees) C.A.Mey (P. japonicus), can regulate the immune responses, such as anti-inflammation, which have been applied in treating various diseases. It is still unclear, nevertheless, whether the CHS IVa can target-able treat endometriosis (EMs) and what the possible mechanism would be. PURPOSE OF THE STUDY This work aims to investigate the possible mechanism and the impact of CHS IVa on EMs. MATERIALS AND METHODS The EMs models were established in mice by autologous transplantation or chemicals (lipopolysaccharide and adenosine triphosphate), inducing the pyroptotic endometrial stromal cells. Then the CHS IVa was used to treat the EMs mice. The therapeutic impact of CHS IVa was assessed by hematoxylin-eosin staining, immunofluorescent staining, western blot (WB), and enzyme-linked immunosorbent assay (ELISA). RESULTS The results of immunofluorescence and WB indicated that pyroptosis indicators, including Gasdermin-D (GSDMD), Caspase-1, NOD-like receptor thermal protein domain associated protein 3 (NLRP3), and interleukin (IL)-1β, were substantially expressed in the ectopic endometrial lesions of EMs mice. The ELISA results showed that the abdominal cavity of EMs mice had higher concentrations of IL-1β, IL-6, and TNF-α than the non-EMs animals (control group). As shown in the molecule docking experiments, CHS IVa exhibited high binding affinity with GSDMD, IL-1β, Caspase-1, and NLRP3. Moreover, after treatment with CHS IVa, the expression levels of GSDMD, IL-1β, Caspase-1, and NLRP3 decreased in the EMs mice. Meanwhile, the expression level of pain-related proteins, such as pro-nerve growth factor (pro-NGF) and transient receptor potential vanilloid-1 (TRPV1), was inhibited via the treatment of CHS IVa. According to the antibody chip analysis, the insulin-like growth factor 1 receptor/phosphatidylinositide 3-kinases (IGF1R/PI3K) signal pathway was essential to the CHS IVa's treatment of EMs. Finally, according to the WB experiments, after the treatment with CHS-Ⅳa, the expression of IGF1R, PI3K, and related phosphorylated proteins increased compared to the mice in lipopolysaccharide + adenosine triphosphate (LPS + ATP) groups. CONCLUSION CHS IVa can activate the IGF1R/PI3K signal pathway, inhibit the pyroptosis of endometrial stromal cells, and relieve the inflammation and EMs.
Collapse
Affiliation(s)
- Yu Huang
- Department of Obstetrics and Gynecology, Zhangjiagang Hospital Affiliated to Soochow University, Zhangjiagang, Jiangsu, 215006, China
| | - Yuanyuan Jiang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215006, China
| | - Hui Ji
- Department of Obstetrics and Gynecology, Zhangjiagang Hospital Affiliated to Soochow University, Zhangjiagang, Jiangsu, 215006, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of SoochowUniversity, Suzhou, Jiangsu, 215006, China
| | - Yu Gao
- Department of Obstetrics and Gynecology, Zhangjiagang Hospital Affiliated to Soochow University, Zhangjiagang, Jiangsu, 215006, China
| | - Long Xiao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215006, China
| | - Wei Zha
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215006, China.
| | - Jinhua Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of SoochowUniversity, Suzhou, Jiangsu, 215006, China.
| | - Haiwei Huang
- Department of Obstetrics and Gynecology, Zhangjiagang Hospital Affiliated to Soochow University, Zhangjiagang, Jiangsu, 215006, China.
| |
Collapse
|
2
|
Zhang W, Li F, Cheng J, Wang Y, Zheng Y, Li H, Lin M, Ruan J, Zhang Y, Wang T. Saponins from Dolichos lablab seeds with anti-inflammatory activity. Bioorg Chem 2024; 151:107692. [PMID: 39102757 DOI: 10.1016/j.bioorg.2024.107692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
As one of a traditional Chinese medicine with dual applications in both medicinal treatment and dietary consumption, the mature seeds of D. lablab were reported to be rich in saponins and have a good effect on inflammatory related diseases. However, the substance basis for its anti-inflammatory activity remains unclear. Thus, a comprehensive phytochemical investigation on triterpenoid saponins from D. lablab seeds was carried out, resulting in the isolation and identification of twenty-one new triterpenoid saponins including dolilabsaponins A1-A4, B, C, D1-D3, E-M, N1, N2 and O (1-21) along with thirteen known analogs (22-34). Notably, the known saponins, 31, 32, and 34 were obtained from Leguminosae family for the first time. The 1H and 13C NMR data of saponins 24 and 28 were firstly reported here. Additionally, lipopolysaccharide (LPS)-stimulated RAW264.7 cells model was utilized to assess inhibitory activities of compounds 1-34 on nitric oxide (NO) production. The results revealed that compounds 1-3, 9, 10, 13-15, 18, 22, 23 and 28-34 significantly suppressed the elevation of NO levels in LPS-induced RAW264.7 cells at the concentration of 30 μM, exhibiting a concentration-dependent manner at 3, 10, and 30 μM. The results suggested that compounds 1-3, 9, 10, 13-15, 18, 22, 23, and 28-34 possessed potential anti-inflammatory activity. Further western blot assay demonstrated that 1, 9, 10, 13, 14, and 18 suppressed inflammatory response via down-regulated the expression levels of inflammatory factors, tumor necrosis factor-alpha and interleukin-6.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China
| | - Fei Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China
| | - Jiaming Cheng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China
| | - Yingying Wang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China
| | - Yinuo Zheng
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China
| | - Huimin Li
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China
| | - Minghao Lin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China
| | - Jingya Ruan
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China
| | - Yi Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China.
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China.
| |
Collapse
|
3
|
Li W, Liu M, Chu M. Strategies targeting IL-33/ST2 axis in the treatment of allergic diseases. Biochem Pharmacol 2023; 218:115911. [PMID: 37981174 DOI: 10.1016/j.bcp.2023.115911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Interleukin-33 (IL-33) and its receptor Serum Stimulation-2 (ST2, also called Il1rl1) are members of the IL-1 superfamily that plays a crucial role in allergic diseases. The interaction of IL-33 and ST2 mainly activates NF-κB signaling and MAPK signaling via the MyD88/IRAK/TRAF6 module, resulting in the production and secretion of pro-inflammatory cytokines. The IL-33/ST2 axis participates in the pathogenesis of allergic diseases, and therefore serves as a promising strategy for allergy treatment. In recent years, strategies blocking IL-33/ST2 through targeting regulation of IL-33 and ST2 or targeting the molecules involved in the signal transduction have been extensively studied mostly in animal models. These studies provide various potential therapeutic agents other than antibodies, such as small molecules, nucleic acids and traditional Chinese medicines. Herein, we reviewed potential targets and agents targeting IL-33/ST2 axis in the treatment of allergic diseases, providing directions for further investigations on treatments for IL-33 induced allergic diseases.
Collapse
Affiliation(s)
- Wenran Li
- Department of Immunology, School of Basic Medical Sciences, Health Science Centre, Peking University. Beijing, China
| | - Mengqi Liu
- Department of Immunology, School of Basic Medical Sciences, Health Science Centre, Peking University. Beijing, China
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Health Science Centre, Peking University. Beijing, China; Beijing Life Science Academy, Beijing, China.
| |
Collapse
|
4
|
Kweon B, Kim DU, Oh JY, Bae GS, Park SJ. Guggulsterone protects against lipopolysaccharide-induced inflammation and lethal endotoxemia via heme oxygenase-1. Int Immunopharmacol 2023; 124:111073. [PMID: 37844468 DOI: 10.1016/j.intimp.2023.111073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
Guggulsterone (GS) is a phytosterol used to treat inflammatory diseases. Although many studies have examined the anti-inflammatory activities of GS, the detailed mechanisms of GS in lipopolysaccharide (LPS)-induced inflammation and endotoxemia have not yet been examined. Therefore, we investigated the anti-inflammatory effects of GS on LPS-induced inflammation. In murine peritoneal macrophages, the anti-inflammatory activity of GS was primarily mediated by heme oxygenase-1 (HO-1) induction. HO-1 induction by GS was mediated by GSH depletion and reactive oxygen species (ROS) production. The ROS generated by GS caused the phosphorylation of GSK3β (ser9/21) and p38, leading to the translocation of nuclear factor erythroid-related factor 2 (Nrf2), which ultimately induced HO-1. In addition, GS pretreatment significantly inhibited inducible nitric oxide synthase (iNOS), iNOS-derived NO, and COX-2 protein and mRNA expression, and production of COX-derived prostaglandin PGE2, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α). In a mouse model of endotoxemia, GS treatment prolonged survival and inhibited the expression of inflammatory mediators, including IL-1β, IL-6, and TNF-α. GS treatment also inhibited LPS-induced liver injury. These results suggest that GS-induced HO-1 could exert anti-inflammatory effects via ROS-dependent GSK (ser21/9)-p38 phosphorylation and nuclear translocation of Nrf2.
Collapse
Affiliation(s)
- Bitna Kweon
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea
| | - Dong-Uk Kim
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea
| | - Jin-Young Oh
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea
| | - Gi-Sang Bae
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea.
| | - Sung-Joo Park
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea; Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea.
| |
Collapse
|
5
|
Hua F, Cui E, Lv L, Wang B, Li L, Lu H, Chen N, Chen W. Fecal microbiota transplantation from HUC-MSC-treated mice alleviates acute lung injury in mice through anti-inflammation and gut microbiota modulation. Front Microbiol 2023; 14:1243102. [PMID: 37840733 PMCID: PMC10569429 DOI: 10.3389/fmicb.2023.1243102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/29/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Acute lung injury (ALI) is a severe respiratory tract disorder facilitated by dysregulated inflammation, oxidative stress and intestinal ecosystem. Fecal microbiota transplantation (FMT) is a rapid method for gut microbiota (GM) reconstruction. Furthermore, our previous studies have confirmed that human umbilical cord mesenchymal stromal cells (HUC-MSCs) can alleviate ALI by improving GM composition. Therefore, we aimed to explore the efficacy and mechanism of FMT from HUC-MSCs-treated mice on ALI. Methods In brief, fresh feces from HUC-MSCs-treated mice were collected for FMT, and the mice were randomly assigned into NC, FMT, LPS, ABX-LPS, and ABX-LPS-FMT groups (n = 12/group). Subsequently, the mice were administrated with antibiotic mixtures to deplete GM, and given lipopolysaccharide and FMT to induce ALI and rebuild GM. Next, the therapeutic effect was evaluated by bronchoalveolar lavage fluid (BALF) and histopathology. Immune cells in peripheral blood and apoptosis in lung tissues were measured. Furthermore, oxidative stress- and inflammation-related parameter levels were tested in BALF, serum, lung and ileal tissues. The expressions of apoptosis-associated, TLR4/NF-κB pathway-associated, Nrf2/HO-1 pathway related and tightly linked proteins in the lung and ileal tissues were assessed. Moreover, 16S rRNA was conducted to assess GM composition and distribution. Results Our results revealed that FMT obviously improved the pathological damage of lung and ileum, recovered the immune system of peripheral blood, decreased the cell apoptosis of lung, and inhibited inflammation and oxidative stress in BALF, serum, lung and ileum tissues. Moreover, FMT also elevated ZO-1, claudin-1, and occludin protein expressions, activating the Nrf2/HO-1 pathway but hindering the TLR4/NF-κB pathway. Of note, the relative abundances of Bacteroides, Christensenella, Coprococcus, and Roseburia were decreased, while the relative abundances of Xenorhabdus, Sutterella, and Acinetobacter were increased in the ABX-LPS-FMT group. Conclusion FMT from HUC-MSCs-treated mice may alleviate ALI by inhibiting inflammation and reconstructing GM, additionally, we also found that the TLR4/NF-κB and Nrf2/HO-1 pathways may involve in the improvement of FMT on ALI, which offers novel insights for the functions and mechanisms of FMT from HUC-MSCs-treated mice on ALI.
Collapse
Affiliation(s)
- Feng Hua
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Enhai Cui
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Lu Lv
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Bin Wang
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Liqin Li
- Traditional Chinese Medicine Key Laboratory Cultivation Base of Zhejiang Province for the Development and Clinical Transformation of Immunomodulatory Drugs, Huzhou, China
| | - Huadong Lu
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Na Chen
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Wenyan Chen
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| |
Collapse
|
6
|
Liu JJ, Long YF, Xu P, Guo HD, Cui GH. Pathogenesis of miR-155 on nonmodifiable and modifiable risk factors in Alzheimer's disease. Alzheimers Res Ther 2023; 15:122. [PMID: 37452431 PMCID: PMC10347850 DOI: 10.1186/s13195-023-01264-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
Alzheimer's disease (AD) is a common age-related neurodegenerative disease in the central nervous system and is the primary cause of dementia. It is clinically characterized by the memory impairment, aphasia, apraxia, agnosia, visuospatial and executive dysfunction, behavioral changes, and so on. Incidence of this disease was bound up with age, genetic factors, cardiovascular and cerebrovascular dysfunction, and other basic diseases, but the exact etiology has not been clarified. MicroRNAs (miRNAs) are small endogenous non-coding RNAs that were involved in the regulation of post-transcriptional gene expression. miRNAs have been extensively studied as noninvasive potential biomarkers for disease due to their relative stability in bodily fluids. In addition, they play a significant role in the physiological and pathological processes of various neurological disorders, including stroke, AD, and Parkinson's disease. MiR-155, as an important pro-inflammatory mediator of neuroinflammation, was reported to participate in the progression of β-amyloid peptide and tau via regulating immunity and inflammation. In this review, we put emphasis on the effects of miR-155 on AD and explore the underlying biological mechanisms which could provide a novel approach for diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Jia-Jia Liu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yun-Fan Long
- Department of Neurology, Shanghai No. 9 People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Peng Xu
- Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong, China.
| | - Hai-Dong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guo-Hong Cui
- Department of Neurology, Shanghai No. 9 People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
7
|
Wang G, Zeng L, Gong C, Gong X, Zhu T, Zhu Y. Extracellular vesicles derived from mouse adipose-derived mesenchymal stem cells promote diabetic corneal epithelial wound healing through NGF/TrkA pathway activation involving dendritic cells. Exp Eye Res 2023; 231:109484. [PMID: 37080382 DOI: 10.1016/j.exer.2023.109484] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/30/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
Diabetic keratopathy (DK) is a common ocular complication of diabetes in which the dendritic cells (DCs)-mediated inflammatory response plays an important role. Nerve growth factor (NGF)/Tropomyosin receptor kinase A (TrkA)-mediated inhibition of the nuclear factor kappa B (NF-κB) pathway can reduce inflammatory cytokine production. Extracellular vesicles (EVs) derived from mouse adipose-derived mesenchymal stem cells (mADSC-EVs) have been explored extensively as treatments for degenerative eye disease. However, mADSC-EVs is poorly studied in the DK models. In this study, we investigated the anti-inflammatory effects of mADSC-EVs and explored the underlying mechanisms in vitro and in vivo DK models. Our results showed that mADSC-EVs have significant therapeutic effects including increasing tear volume and the ratio of lacrimal gland/body weight, promoting corneal nerve regeneration, and sensation recovery in streptozotocin (STZ)-induced DK mice. In addition, mADSC-EVs significantly reduced the inflammatory response involving DCs, consistently up-regulated protein expression of the NGF/TrkA pathway, and importantly, reduced lipopolysaccharide (LPS)-mediated IL-6 and TNF-α expression and directly dependent on TrkA in the induced culture of bone marrow-derived DCs (BMDCs). Taken together, our findings revealed that mADSC-EVs promoted diabetic corneal epithelial wound healing through NGF/TrkA pathway activation involving DCs. Given the significant therapeutic efficacy of mADSC-EVs and its clinical application, mADSC-EVs appears to be a promising new therapy for DK.
Collapse
Affiliation(s)
- Guifang Wang
- Ophthalmology Department, Loudi Central Hospital, Loudi, China.
| | - Li Zeng
- Ophthalmology Department, Loudi Central Hospital, Loudi, China
| | - Can Gong
- Ophthalmology Department, Loudi Central Hospital, Loudi, China
| | - Xileyuan Gong
- Ophthalmology Department, Loudi Central Hospital, Loudi, China
| | - Tupeng Zhu
- Ophthalmology Department, Loudi Central Hospital, Loudi, China
| | - Yujie Zhu
- Ophthalmology Department, Loudi Central Hospital, Loudi, China
| |
Collapse
|
8
|
Xue X, Wang J, Fu K, Dai S, Wu R, Peng C, Li Y. The role of miR-155 on liver diseases by modulating immunity, inflammation and tumorigenesis. Int Immunopharmacol 2023; 116:109775. [PMID: 36753984 DOI: 10.1016/j.intimp.2023.109775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/08/2023]
Abstract
The liver is a well-known metabolic organ that can be susceptible to external stimuli to affect its normal physiological function. Worldwide, the morbidity and mortality of liver diseases are skyrocketing every year, causing human health crises. Recently, new approaches such as biotechnology have been introduced to achieve optimal treatment and prognostic management of liver diseases. microRNAs (miRNAs), a kind of small non-coding RNA molecule, have the advantages of biodiversity, wide distribution and numerous members. Among these miRNAs, miR-155 is an important regulator of inflammation, immunity and tumorigenesis. In this review, the PubMed and Web of Science databases were searched from 2009 to 2022. After inclusion and exclusion, 64 articles were selected for a systematic review to comprehensively summarize the mechanisms of miR-155 regulating inflammation, immunity and tumorigenesis in liver diseases and liver cancer, covering in vitro, in vivo and clinical studies. Existing preclinical studies and clinical trials have listed that the up-regulation and down-regulation of miR-155 are significant in alcoholic liver injury, viral hepatitis, autoimmune hepatitis, infectious liver injury, liver transplantation and liver cancer. The immune and inflammation effects of miR-155 are manifested by regulating macrophage polarization, NK cell killing, Th17 cell and Th1/Th2 cell differentiation. Additionally, miR-155 is also committed to participating in the cell cycle, invasion and metastasis, immune escape and other processes to promote and intensify the development of liver cancer. In conclusion, miR-155 is not only a biomarker for the diagnosis and prognosis of liver diseases, but also plays a therapeutic role via regulating immunity, inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
9
|
Xiang Y, Zhang H, Xu Zhang Z, Yang Qu X, Xia Zhu F. Dihydrosanguinarine based RNA-seq approach couple with network pharmacology attenuates LPS-induced inflammation through TNF/IL-17/PI3K/AKT pathways in mice liver. Int Immunopharmacol 2022; 109:108779. [DOI: 10.1016/j.intimp.2022.108779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/02/2022] [Accepted: 04/13/2022] [Indexed: 01/24/2023]
|
10
|
Gosha-jinki-Gan (GJG) shows anti-aging effects through suppression of TNF-α production by Chikusetsusaponin V. Gene 2022; 815:146178. [PMID: 34995733 DOI: 10.1016/j.gene.2021.146178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022]
Abstract
Frailty develops due to multiple factors, such as sarcopenia, chronic pain, and dementia. Go-sha-jinki-Gan (GJG) is a traditional Japanese herbal medicine used for age-related symptoms. We have reported that GJG improved sarcopenia, chronic pain, and central nervous system function through suppression of tumor necrosis factor-alpha (TNF-α) production. In the present study, GJG was found to reduce the production of TNF-α in the soleus muscle of senescence-accelerated mice at 12 weeks and 36 weeks. GJG did not change the differentiation of C2C12 cells with 2% horse serum. GJG significantly decreased the expression of Muscle atrophy F-box protein (MAFbx) induced by TNF-α in C2C12 cells on real-time PCR. TNF-α significantly decreased the expression of PGC-1α and negated the enhancing effect of GJG for the expression of PGC-1α on digital PCR. Examining 20 chemical compounds derived from GJG, cinnamaldehyde from cinnamon bark and Chikusetsusaponin V (CsV) from Achyrantes Root dose-dependently decreased the production of TNF-⍺ in RAW264.7 cells stimulated by LPS. CsV inhibited the nuclear translocation of nuclear factor-kappa B (NF-κB) p65 in RAW264.7 cells. CsV showed low permeability using Caco-2 cells. However, the plasma concentration of CsV was detected from 30 min to 6 h and peaked at 1 h in the CD1 (ICR) mice after a single dose of GJG. In 8-week-old SAMP8 mice fed 4% (w/w) GJG from one week to four weeks, the plasma CsV concentration ranged from 0.0500 to 10.0 ng/mL. The evidence that CsV plays an important role in various anti-aging effects of GJG via suppression of TNF-⍺ expression is presented.
Collapse
|
11
|
Chen M, Liang J, Wang Y, Liu Y, Zhou C, Hong P, Zhang Y, Qian ZJ. A new benzaldehyde from the coral-derived fungus Aspergillus terreus C23-3 and its anti-inflammatory effects via suppression of MAPK signaling pathway in RAW264.7 cells. J Zhejiang Univ Sci B 2022; 23:230-240. [PMID: 35261218 DOI: 10.1631/jzus.b2100807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Marine fungi are important members of the marine microbiome, which have been paid growing attention by scientists in recent years. The secondary metabolites of marine fungi have been reported to contain rich and diverse compounds with novel structures (Chen et al., 2019). Aspergillus terreus, the higher level marine fungus of the Aspergillus genus (family of Trichocomaceae, order of Eurotiales, class of Eurotiomycetes, phylum of Ascomycota), is widely distributed in both sea and land. In our previous study, the coral-derived A. terreus strain C23-3 exhibited potential in producing other biologically active (with antioxidant, acetylcholinesterase inhibition, and anti-inflammatory activity) compounds like arylbutyrolactones, territrems, and isoflavones, and high sensitivity to the chemical regulation of secondary metabolism (Yang et al., 2019, 2020; Nie et al., 2020; Ma et al., 2021). Moreover, we have isolated two different benzaldehydes, including a benzaldehyde with a novel structure, from A. terreus C23-3 which was derived from Pectinia paeonia of Xuwen, Zhanjiang City, Guangdong Province, China.
Collapse
Affiliation(s)
- Minqi Chen
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.,Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen 518108, China
| | - Jinyue Liang
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuan Wang
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yayue Liu
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.,Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen 518108, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Chunxia Zhou
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.,Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen 518108, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Pengzhi Hong
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.,Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen 518108, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Zhang
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China. .,Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen 518108, China. .,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Zhong-Ji Qian
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China. , .,Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen 518108, China. , .,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China. ,
| |
Collapse
|
12
|
Miranda RDS, Jesus BDSM, Silva Luiz SR, Viana CB, Adão Malafaia CR, Figueiredo FDS, Carvalho TDSC, Silva ML, Londero VS, Costa‐Silva TA, Lago JHG, Martins RCC. Antiinflammatory activity of natural triterpenes—An overview from 2006 to 2021. Phytother Res 2022; 36:1459-1506. [DOI: 10.1002/ptr.7359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Rodrigo de Souza Miranda
- Institute of Natural Products Research Walter Mors Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | | | - Sandra Regina Silva Luiz
- Institute of Microbiology Paulo de Góes Federal University of Rio de Janeiro (IMPG‐UFRJ) Rio de Janeiro Brazil
| | - Cristina Borges Viana
- Institute of Natural Products Research Walter Mors Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | - Camila Rodrigues Adão Malafaia
- Laboratory of Natural Products and Biological Assays, Natural Products and Food Department, Faculty of Pharmacy Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | - Fabiana de Souza Figueiredo
- Institute of Natural Products Research Walter Mors Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | | | - Matheus Lopes Silva
- Center of Human and Natural Sciences Federal University of ABC (UFABC) Santo André Brazil
| | - Vinicius Silva Londero
- Institute of Environmental, Chemical and Pharmaceutical Sciences Federal University of São Paulo (UNIFESP) Diadema Brazil
| | | | | | - Roberto Carlos Campos Martins
- Institute of Natural Products Research Walter Mors Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| |
Collapse
|
13
|
Guo X, Ji J, Zhang J, Hou X, Fu X, Luo Y, Mei Z, Feng Z. Anti-inflammatory and osteoprotective effects of Chikusetsusaponin Ⅳa on rheumatoid arthritis via the JAK/STAT signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153801. [PMID: 34758437 DOI: 10.1016/j.phymed.2021.153801] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/22/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a common autoimmune disease, for which no economical and safe target drug treatment is available. Chikusetsusaponin Ⅳa (CS-IVa), an active compound in Panax japonicus C.A. Mey, has a good anti-inflammatory effect, but whether this compound can serve as a targeted drug for RA and the corresponding therapeutic mechanism remain unclear. PURPOSE To investigate the anti-inflammatory and bone-protecting effects of CS-IVa on RA and the possible corresponding mechanisms of action. METHODS Biomarkers and underlying pathological mechanisms were examined by performing a bioinformatics analysis of RA synovial gene expression data profiles, and the feasibility of CS-IVa treatment for RA was predicted using molecular docking and molecular dynamics simulation techniques. Histomorphological and molecular biology techniques were used to verify the feasibility and molecular mechanism of CS-IVa treatment for RA in vivo using a collagen-induced arthritis (CIA) model. RESULTS CS-IVa alleviated symptoms and reduced the immune organ index, arthritis index, hind paw thickness, and number of swollen joints in the foot for CIA mice. Bioinformatics analysis suggested that interferon-gamma (IFN-γ), interleukin-1 β (IL-1β), and the Janus kinase/signal transduction and activator of transcription (JAK/STAT) pathway played important roles in the pathogenesis of RA. The results of molecular docking and molecular dynamics simulations showed that CS-IVa bound effectively to IFN-γ and IL-1β and that the combined pose has good stability and flexibility. The histomorphological results showed that CS-IVa reduced joint histopathology scores, OARSI scores, and TRAP-positive cell counts. Molecular biology analysis indicated that CS-IVa reduced the concentration of inflammatory factors in the peripheral serum of CIA mice and suppressed the mRNA expression of these factors in the spleen in a dose-dependent manner. The protein expression level of the JAK/STAT pathway was also inhibited by CS-IVa. CONCLUSION The results of the current study demonstrate a novel inhibitory effect of CS-IVa on inflammation and bone destruction in CIA mice, and the mechanism may be related to the JAK/STAT signaling pathway, which provides new insights into the development of CS-IVa as a therapeutic agent for RA.
Collapse
Affiliation(s)
- Xiang Guo
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei 443002, China
| | - Jinyu Ji
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei 443002, China
| | - Jingkai Zhang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei 443002, China
| | - Xiaoqiang Hou
- Institute of Rheumatology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443003, China
| | - Xianyun Fu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei 443002, China
| | - Yanan Luo
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei 443002, China
| | - Zhigang Mei
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Zhitao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei 443002, China; Institute of Rheumatology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443003, China.
| |
Collapse
|
14
|
Zhu J, Wang J, Wang X, Gao M, Guo B, Gao M, Liu J, Yu Y, Wang L, Kong W, An Y, Liu Z, Sun X, Huang Z, Zhou H, Zhang N, Zheng R, Xie Z. Prediction of drug efficacy from transcriptional profiles with deep learning. Nat Biotechnol 2021; 39:1444-1452. [PMID: 34140681 DOI: 10.1038/s41587-021-00946-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 05/06/2021] [Indexed: 02/05/2023]
Abstract
Drug discovery focused on target proteins has been a successful strategy, but many diseases and biological processes lack obvious targets to enable such approaches. Here, to overcome this challenge, we describe a deep learning-based efficacy prediction system (DLEPS) that identifies drug candidates using a change in the gene expression profile in the diseased state as input. DLEPS was trained using chemically induced changes in transcriptional profiles from the L1000 project. We found that the changes in transcriptional profiles for previously unexamined molecules were predicted with a Pearson correlation coefficient of 0.74. We examined three disorders and experimentally tested the top drug candidates in mouse disease models. Validation showed that perillen, chikusetsusaponin IV and trametinib confer disease-relevant impacts against obesity, hyperuricemia and nonalcoholic steatohepatitis, respectively. DLEPS can generate insights into pathogenic mechanisms, and we demonstrate that the MEK-ERK signaling pathway is a target for developing agents against nonalcoholic steatohepatitis. Our findings suggest that DLEPS is an effective tool for drug repurposing and discovery.
Collapse
Affiliation(s)
- Jie Zhu
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, China.,Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Jingxiang Wang
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, China
| | - Xin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Mingjing Gao
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, China
| | - Bingbing Guo
- Department of Anatomy, Histology and Embryology, Neuroscience Research Institute, Health Science Center, Peking University, Beijing, China
| | - Miaomiao Gao
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, China
| | - Jiarui Liu
- Department of Anatomy, Histology and Embryology, Neuroscience Research Institute, Health Science Center, Peking University, Beijing, China
| | - Yanqiu Yu
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, China
| | - Liang Wang
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Weikaixin Kong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Health Science Center, Peking University, Beijing, China
| | - Yongpan An
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Zurui Liu
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Health Science Center, Peking University, Beijing, China
| | - Hong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China.
| | - Ning Zhang
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, China.
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, Neuroscience Research Institute, Health Science Center, Peking University, Beijing, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, China. .,Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, China.
| |
Collapse
|
15
|
Modulation of the Wound Healing through Noncoding RNA Interplay and GSK-3 β/NF- κB Signaling Interaction. Int J Genomics 2021; 2021:9709290. [PMID: 34485505 PMCID: PMC8413067 DOI: 10.1155/2021/9709290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/10/2021] [Indexed: 12/30/2022] Open
Abstract
Diabetic foot ulcers are seriously endangering the physical and mental health of patients. Due to the long duration of inflammation, the treatment of nonhealing wounds in diabetes is one of the most prominent healthcare problems in the world. The nuclear factor kappa B (NF-κB) signaling pathway, a classical pathway that triggers inflammatory response, is regulated by many regulators, such as glycogen synthase kinase 3 beta (GSK-3β). Noncoding RNAs, a large class of molecules that regulate gene expression at the posttranscriptional or posttranslational level, play an important role in various stages of wound healing, especially in the stage of inflammation. Herein, we summarized the roles of noncoding RNAs in the NF-κB/GSK-3β signaling, which might provide new ideas for the treatment of diabetic wound healing.
Collapse
|
16
|
Liu ZC, Yu WW, Zhou HC, Lan ZC, Wu T, Xiong SM, Yan L, Liu HB. Lycium barbarum polysaccharides ameliorate LPS-induced inflammation of RAW264.7 cells and modify the behavioral score of peritonitis mice. J Food Biochem 2021; 45:e13889. [PMID: 34426988 DOI: 10.1111/jfbc.13889] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/26/2021] [Accepted: 07/19/2021] [Indexed: 01/17/2023]
Abstract
In the present study, the anti-inflammatory effect of Lycium barbarum polysaccharide (LBP) and the possible molecular mechanism thereof were examined, so as to perceive the pharmacological action of LBP. With acute peritonitis in mice as the inflammatory model, the protective effect of LBP on peritonitis mice was evaluated by recording the effect of behavioral scores, studying the pathological damage of intestine and liver, and detecting the levels of inflammatory cytokines. Additionally, by establishing an lipopolysaccharide (LPS)-induced RAW264.7 macrophage model, the effect of LBP on RAW264.7 cell phenotype and culture supernatant inflammatory markers was observed. Finally, the activation of inflammation-related target genes, such as iNOS, Toll-like receptor 4 (TLR4), nuclear factor-κB (NF-κB) p65, and IκBα, were further detected. The results reveal that pretreatment with LBP could decrease the behavioral score of inflammatory mice, inhibit the secretion of pro-inflammatory factors, and reduce liver and intestine injury. LBP can regulate the effect of lipopolysaccharide on the polarization of RAW264.7 cells, and reduce the production of NO and cytokines (TNF-α, IL-1β, IL-6). Further, LBP pretreatment was found to be able to significantly reduce the expression of iNOS, TLR4, NF-κB p65, and IκBα in macrophages. The present research provides evidence that LBP exerts potential anti-inflammatory activity in LPS-induced RAW264.7 macrophages via inhibiting TLR4 and NF-κB inflammatory sites and improving the behavior score of peritonitis mice. PRACTICAL APPLICATIONS: In recent years, the number of deaths worldwide has continued to rise as a result of inflammation. Despite said rise in deaths, many synthetic drugs with anti-inflammatory properties are significantly expensive and also have a host of side effects. Thus, the development of new anti-inflammatory drugs derived from medicinal plants has broad application potential. As such, in the present study, lipopolysaccharide (LPS)-induced macrophages were used to establish inflammatory cell models to verify the anti-inflammatory effect of Lycium barbarum polysaccharides (LBP). Findings were made that LBP could reduce the expression levels of inflammatory cytokines and NO by regulating macrophage polarization and NF-κB translocation, and thus, could exert anti-inflammatory activity. In addition, by intraperitoneal injection of LPS to establish peritonitis mice models, LBP pretreatment was found to have significantly modified the behavioral score of mice, while decreasing the secretion of inflammatory factors and the damage to several organs. The present study provides a basis for further understanding the effects of LBP in acute inflammation.
Collapse
Affiliation(s)
- Zhi-Chang Liu
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Gansu Provincial Key Laboratory of Stem Cells and Gene Drugs, Lanzhou, P.R. China
| | - Wen-Wen Yu
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Hai-Cun Zhou
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Department of General Surgery, Gansu Maternal and Child Health Care Hospital, Lanzhou, P.R. China
| | - Zheng-Cang Lan
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China
| | - Tong Wu
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China
| | - Shi-Meng Xiong
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Gansu Provincial Key Laboratory of Stem Cells and Gene Drugs, Lanzhou, P.R. China
| | - Long Yan
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China.,Clinical Medical College, Northwest Minzu University, Lanzhou, P.R. China
| | - Hong-Bin Liu
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Clinical Medical College, Northwest Minzu University, Lanzhou, P.R. China
| |
Collapse
|
17
|
Cao L, Li Z, Yang Z, Wang M, Zhang W, Ren Y, Li L, Hu J, Sun Z, Nie S. Ferulic acid positively modulates the inflammatory response to septic liver injury through the GSK-3β/NF-κB/CREB pathway. Life Sci 2021; 277:119584. [PMID: 33961853 DOI: 10.1016/j.lfs.2021.119584] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/16/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022]
Abstract
AIMS Ferulic acid (FA) is a component found in plants that has free radical scavenging and liver-protective properties. Acute liver injury (ALI) is a serious complication of sepsis and is closely associated with changes in the levels of inflammatory factors. This study was taken to examine the role of FA in cecal ligation and perforation (CLP)-induced murine ALI and lipopolysaccharide (LPS)-induced cellular ALI models. MATERIALS AND METHODS An in vivo ALI model was established by performing CLP surgery on C57BL/6 mice. After the ALI model was established, mice were examined for liver injury, including HE staining to observe tissue sections, the percentage of liver/body weight and inflammatory factor levels. Myeloperoxidase (MPO), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were measured in liver or serum using commercial kits. An in vitro ALI model was established using LPS-stimulated RAW264.7 cells. Cell viability was measured by MTT method and the intracellular levels of IL-10, IL-1β, IL-6, IL-12 and TNF-α inflammatory factors were measured using kits. The expression of GSK-3β, NF-κB and CREB was measured by western blot or immunofluorescence. KEY FINDINGS FA pretreatment significantly reduced liver/body weight ratio, decreased MPO, AST and ALT activity, alleviated the inflammatory responses and improved CLP-induced histopathological changes in liver. In addition, in vitro results showed that FA could dose-dependently increase the viability of RAW264.7 cells and decrease the levels of pro-inflammatory factors. SIGNIFICANCE In conclusion, our data suggest that FA can ameliorate ALI-induced inflammation via the GSK-3β/NF-κB/CREB pathway, suggesting that FA can be used to protect the liver against ALI.
Collapse
Affiliation(s)
- Liping Cao
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhenghong Li
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Zhizhou Yang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Mengmeng Wang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Wei Zhang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Yi Ren
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Liang Li
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Junxian Hu
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Zhaorui Sun
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China.
| | - Shinan Nie
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China.
| |
Collapse
|
18
|
Shen P, Chen Y, Luo S, Fan Z, Wang J, Chang J, Deng J. Applications of biomaterials for immunosuppression in tissue repair and regeneration. Acta Biomater 2021; 126:31-44. [PMID: 33722787 DOI: 10.1016/j.actbio.2021.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
The immune system plays an essential role in tissue repair and regeneration. Regardless of innate or adaptive immune responses, immunosuppressive strategies such as macrophage polarization and regulatory T (Treg) cell induction can be used to modulate the immune system to promote tissue repair and regeneration. Biomaterials can improve the production of anti-inflammatory macrophages and Treg cells by providing physiochemical cues or delivering therapeutics such as cytokines, small molecules, microRNA, growth factors, or stem cells in the damaged tissues. Herein, we present an overview of immunosuppressive modulation by biomaterials in tissue regeneration and highlight the mechanisms of macrophage polarization and Treg cell induction. Overall, we foresee that future biomaterials for regenerative strategies will entail more interactions between biomaterials and the immune cells, and more mechanisms of immunosuppression related to T cell subsets remain to be discovered and applied to develop novel biomaterials for tissue repair and regeneration. STATEMENT OF SIGNIFICANCE: Immunosuppression plays a key role in tissue repair and regeneration, and biomaterials can interact with the immune system through their biological properties and by providing physiochemical cues. Here, we summarize the studies on biomaterials that have been used for immunosuppression to facilitate tissue regeneration. In the first part of this review, we demonstrate the crucial role of macrophage polarization and induction of T regulatory (Treg) cells in immunosuppression. In the second part, distinct approaches used by biomaterials to induce immunosuppression are introduced, which show excellent performance in terms of promoting tissue regeneration.
Collapse
Affiliation(s)
- Peng Shen
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Yanxin Chen
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Shuai Luo
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Zhiyuan Fan
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Jilong Wang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Jiang Chang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.
| | - Junjie Deng
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| |
Collapse
|
19
|
Cao L, Li Z, Ren Y, Wang M, Yang Z, Zhang W, Han X, Yao M, Sun Z, Nie S. Xuebijing Protects Against Septic Acute Liver Injury Based on Regulation of GSK-3β Pathway. Front Pharmacol 2021; 12:627716. [PMID: 33995024 PMCID: PMC8120308 DOI: 10.3389/fphar.2021.627716] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/17/2021] [Indexed: 01/10/2023] Open
Abstract
Xuebijing (XBJ), the only drug approved for the sepsis and multiple organ dysfunction, and its protective effects against acute liver injury (ALI) and its mechanism. The aim of this study was to evaluate the protective effect of XBJ on cecal ligation and perforation (CLP)-induced mouse ALI model and LPS-induced RAW264.7 cell ALI model. Mice were pretreated with XBJ before the CLP model was established, and serum and liver tissues were collected at the end of the experiment to assess the levels of inflammatory factors and liver injury. Results showed that XBJ pretreatment reduced liver/body weight, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities in serum, and inhibited levels of pro-inflammatory factors in serum. Cells were treatment with XBJ and modeled by LPS modeling increased cell viability in the XBJ-treated group compared to the model group and XBJ also decreased serum pro-inflammatory factors in a dose-dependent manner. Western blot detected that XBJ also up-regulated the phosphorylated levels of glycogen synthase kinase-3β (p-GSK-3β) and cAMP-response element-binding protein (p-CREB) and down-regulated the phosphorylated level of nuclear factor kappa-B (p-NF-κB) in liver and cell. After overexpression of GSK-3β in cells, the mechanism was further investigated using CO-IP analysis. The binding of p-NF-κB and p-CREB to CREB-binding protein (CBP) was increased and decreased, respectively, indicating that GSK-3β regulated inflammation by regulating the binding of p-NF-κB and p-CREB to CBP. The present studies suggested that the hepatoprotective effect of XBJ may be through up-regulation of GSK-3β (Ser9) and increasing the binding of p-CREB to CBP, thereby alleviating the inflammatory response.
Collapse
Affiliation(s)
- Liping Cao
- Nanjing University of Chinese Medicine, Nanjing, China.,Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhenghong Li
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Ren
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mengmeng Wang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhizhou Yang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wei Zhang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaoqin Han
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mengya Yao
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhaorui Sun
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shinan Nie
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|