1
|
Liu ZY, Huang RH. Integrating single-cell RNA-sequencing and bulk RNA-sequencing data to explore the role of mitophagy-related genes in prostate cancer. Heliyon 2024; 10:e30766. [PMID: 38774081 PMCID: PMC11107114 DOI: 10.1016/j.heliyon.2024.e30766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/24/2024] Open
Abstract
Prostate cancer (PCa) is the most common malignancy of the male urinary system. Mitophagy, as a type of autophagy, can remove damaged mitochondria in cells. Mitophagy-related genes (MRGs) have been shown to play critical roles in the development of PCa. To this end, based on the comprehensive analysis of RNA-seq and scRNA-seq data of PCa samples and their controls, this paper identified PCa subtypes and constructed a prognostic model. In this paper, we downloaded scRNA-seq and RNA-seq data from Gene Expression Omnibus (GEO) and TCGA database. Based on the R package "Seurat" to process the scRNA-seq data, a total of five cell types were identified. Each cell population was scored based on the R package "AUCell" and using the intersection genes between MRGs and each cell population. The B cell population was then identified as a high-scoring cell population. Differentially expressed genes in RNA-seq data were identified based on the R package "limma" and intersected with previously intersected genes. Then, based on univariate Cox regression analysis and Lasso-Cox regression analysis, the prognostic genes were screened, and the risk model was constructed (composed of ADH5, CAT, BCAT2, DCXR, OGT, and FUS). The model is validated on internal and external test sets. Independent prognostic analysis identified age, N stage, and risk score as independent prognostic factors. This paper's risk models and prognostic genes can provide a reference for developing novel therapeutic targets for PCa.
Collapse
Affiliation(s)
- Zong-Yan Liu
- Department of Pharmacy, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Ganzhou, Jiangxi, 341000, China
| | - Ruo-Hui Huang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Gan Zhou, Jiang xi, 341000, China
- Jiangxi Stone Prevention Engineering Technology Research Center, Gan Zhou, Jiang xi, 341000, China
| |
Collapse
|
2
|
Liu Z, Chiu YC, Chen Y, Huang Y. A Metastatic Cancer Expression Generator (MetGen): A Generative Contrastive Learning Framework for Metastatic Cancer Generation. Cancers (Basel) 2024; 16:1653. [PMID: 38730604 PMCID: PMC11083328 DOI: 10.3390/cancers16091653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Despite significant advances in tumor biology and clinical therapeutics, metastasis remains the primary cause of cancer-related deaths. While RNA-seq technology has been used extensively to study metastatic cancer characteristics, challenges persist in acquiring adequate transcriptomic data. To overcome this challenge, we propose MetGen, a generative contrastive learning tool based on a deep learning model. MetGen generates synthetic metastatic cancer expression profiles using primary cancer and normal tissue expression data. Our results demonstrate that MetGen generates comparable samples to actual metastatic cancer samples, and the cancer and tissue classification yields performance rates of 99.8 ± 0.2% and 95.0 ± 2.3%, respectively. A benchmark analysis suggests that the proposed model outperforms traditional generative models such as the variational autoencoder. In metastatic subtype classification, our generated samples show 97.6% predicting power compared to true metastatic samples. Additionally, we demonstrate MetGen's interpretability using metastatic prostate cancer and metastatic breast cancer. MetGen has learned highly relevant signatures in cancer, tissue, and tumor microenvironments, such as immune responses and the metastasis process, which can potentially foster a more comprehensive understanding of metastatic cancer biology. The development of MetGen represents a significant step toward the study of metastatic cancer biology by providing a generative model that identifies candidate therapeutic targets for the treatment of metastatic cancer.
Collapse
Affiliation(s)
- Zhentao Liu
- Department of Electrical and Computer, University of Pittsburgh, Pittsburgh, PA 15260, USA;
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Yu-Chiao Chiu
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA;
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yidong Chen
- Greehey Children Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Population Health Science, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yufei Huang
- Department of Electrical and Computer, University of Pittsburgh, Pittsburgh, PA 15260, USA;
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Wu J, Yang R, Ge H, Zhu Y, Liu S. PTX3 promotes breast cancer cell proliferation and metastasis by regulating PKCζbreast cancer, pentraxin 3, protein kinase Cζ, proliferation, metastasis. Exp Ther Med 2024; 27:124. [PMID: 38410189 PMCID: PMC10895465 DOI: 10.3892/etm.2024.12412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer in women, providing a leading cause of death from malignancy. Pentraxin 3 (PTX3) and protein kinase C ζ (PKCζ) are both known to exert important roles in the progression of multiple types of tumors, including BC. The present study aimed to explore both their interaction and their role in promoting the proliferation and metastasis of BC. The expression level of PTX3 was found to be elevated both in patients with BC and in BC cells; furthermore, it was found to be associated with lymph node metastasis in patients with BC. Knockdown of PTX3 decreased the rate of cell proliferation and the effects of a series of metastasis-associated cellular processes, including cell chemotaxis, migration, adhesion and invasion, as well as diminishing actin polymerization of the MDA-MB-231 and MCF7 BC cells, and decreasing tumor pulmonary metastasis in vivo. Mechanistically, PTX3 and PKCζ were found to be colocalized intracellularly, and they were co-translocated to the cell membrane upon stimulation with epidermal growth factor. Following the knockdown of PTX3, both the phosphorylation and membrane translocation of PKCζ were significantly impaired, suggesting that PTX3 regulates the activation of PKCζ. Taken together, the findings of the present study have shown that PTX3 may promote the proliferation and metastasis of BC cells through regulating PKCζ activation to enhance cell migration, cell chemotaxis, cell invasion and cell adhesion.
Collapse
Affiliation(s)
- Jing Wu
- Clinical Laboratory, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Institute of Hepatobiliary Disease, Artificial Cell Engineering Technology Research Center, The Third Central Hospital of Tianjin, Tianjin 300170, P.R. China
| | - Rui Yang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Haize Ge
- Clinical Laboratory, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Institute of Hepatobiliary Disease, Artificial Cell Engineering Technology Research Center, The Third Central Hospital of Tianjin, Tianjin 300170, P.R. China
| | - Yu Zhu
- Clinical Laboratory, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Institute of Hepatobiliary Disease, Artificial Cell Engineering Technology Research Center, The Third Central Hospital of Tianjin, Tianjin 300170, P.R. China
| | - Shuye Liu
- Clinical Laboratory, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Institute of Hepatobiliary Disease, Artificial Cell Engineering Technology Research Center, The Third Central Hospital of Tianjin, Tianjin 300170, P.R. China
| |
Collapse
|
4
|
Li D, Hao Z, Nan Y, Chen Y. Role of long pentraxin PTX3 in cancer. Clin Exp Med 2023; 23:4401-4411. [PMID: 37438568 DOI: 10.1007/s10238-023-01137-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Cancer has become a leading cause of death and disease burden worldwide, closely related to rapid socioeconomic development. However, the fundamental reason is the lack of comprehensive understanding of the mechanism of cancer, accurate identification of preclinical cancer, and effective treatment of the disease. Therefore, it is particularly urgent to study specific mechanisms of cancer and develop effective prediction and treatment methods. Long Pentraxin PTX3 is a soluble pattern recognition molecule produced by various cells in inflammatory sites, which plays a role as a promoter or suppressor of cancer in multiple tumors through participating in innate immune response, neovascularization, energy metabolism, invasion, and metastasis mechanisms. Based on this, this article mainly reviews the role of PTX3 in various cancers.
Collapse
Affiliation(s)
- Duo Li
- Department of Respiratory Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an 710038, China
| | - Zhaozhao Hao
- Department of Respiratory Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an 710038, China
| | - Yandong Nan
- Department of Respiratory Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an 710038, China.
| | - Yanwei Chen
- Department of Respiratory Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an 710038, China
| |
Collapse
|
5
|
Qiu L, Li J, Bai H, Wang L, Zeng Q, Wu S, Li P, Mu L, Yin X, Ye J. Long-chain pentraxin 3 possesses agglutination activity and plays a role in host defense against bacterial infection in Oreochromis niloticus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 149:105053. [PMID: 37657531 DOI: 10.1016/j.dci.2023.105053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023]
Abstract
Pentraxin 3 (PTX3) is a soluble pattern recognition molecule in the innate immune system that has multiple functions. It is involved in resisting pathogen infection. However, the functions of PTX3 in teleost fish are not well understood. In this study, we identified and characterized PTX3 in Nile tilapia (Oreochromis niloticus) (OnPTX3). The open reading frame of OnPTX3 was found to be 1305 bp, encoding 434 aa. We conducted spatial mRNA expression analysis and found that the expression of OnPTX3 was significantly increased after infection with Streptococcus agalactiae and Aeromonas hydrophila, both in vivo and in vitro. We also observed that recombinant OnPTX3 protein could bind and agglutinate bacterial pathogen. Furthermore, OnPTX3 enhanced the phagocytosis of bacteria (S. agalactiae and A. hydrophila) by head kidney macrophages. Additionally, OnPTX3 was found to influence the expression of inflammatory cytokines, suggesting its involvement in the regulation of the inflammatory response. Moreover, OnPTX3 was shown to promote complement-mediated hemolysis and possess antibacterial activity. In conclusion, our research demonstrates that OnPTX3 has bacterial binding and agglutination activities, enhances phagocytosis, and regulates inflammation. It plays a crucial role in the defense of Nile tilapia against pathogenic bacteria, providing valuable insights for the prevention and control of aquatic diseases in the future.
Collapse
Affiliation(s)
- Li Qiu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jiadong Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Hao Bai
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Lili Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Qingliang Zeng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Siqi Wu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Peiyu Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Liangliang Mu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.
| | - Xiaoxue Yin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.
| | - Jianmin Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 5a0642, PR China; Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
6
|
A Novel Blood Proteomic Signature for Prostate Cancer. Cancers (Basel) 2023; 15:cancers15041051. [PMID: 36831393 PMCID: PMC9954127 DOI: 10.3390/cancers15041051] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Prostate cancer is the most common malignant tumour in men. Improved testing for diagnosis, risk prediction, and response to treatment would improve care. Here, we identified a proteomic signature of prostate cancer in peripheral blood using data-independent acquisition mass spectrometry combined with machine learning. A highly predictive signature was derived, which was associated with relevant pathways, including the coagulation, complement, and clotting cascades, as well as plasma lipoprotein particle remodeling. We further validated the identified biomarkers against a second cohort, identifying a panel of five key markers (GP5, SERPINA5, ECM1, IGHG1, and THBS1) which retained most of the diagnostic power of the overall dataset, achieving an AUC of 0.91. Taken together, this study provides a proteomic signature complementary to PSA for the diagnosis of patients with localised prostate cancer, with the further potential for assessing risk of future development of prostate cancer. Data are available via ProteomeXchange with identifier PXD025484.
Collapse
|
7
|
Chiari D, Pirali B, Perano V, Leone R, Mantovani A, Bottazzi B. The crossroad between autoimmune disorder, tissue remodeling and cancer of the thyroid: The long pentraxin 3 (PTX3). Front Endocrinol (Lausanne) 2023; 14:1146017. [PMID: 37025408 PMCID: PMC10070760 DOI: 10.3389/fendo.2023.1146017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Thyroid is at the crossroads of immune dysregulation, tissue remodeling and oncogenesis. Autoimmune disorders, nodular disease and cancer of the thyroid affect a large amount of general population, mainly women. We wondered if there could be a common factor behind three processes (immune dysregulation, tissue remodeling and oncogenesis) that frequently affect, sometimes coexisting, the thyroid gland. The long pentraxin 3 (PTX3) is an essential component of the humoral arm of the innate immune system acting as soluble pattern recognition molecule. The protein is found expressed in a variety of cell types during tissue injury and stress. In addition, PTX3 is produced by neutrophils during maturation in the bone-marrow and is stored in lactoferrin-granules. PTX3 is a regulator of the complement cascade and orchestrates tissue remodeling and repair. Preclinical data and studies in human tumors indicate that PTX3 can act both as an extrinsic oncosuppressor by modulating complement-dependent tumor-promoting inflammation, or as a tumor-promoter molecule, regulating cell invasion and proliferation and epithelial to mesenchymal transition, thus suggesting that this molecule may have different functions on carcinogenesis. The involvement of PTX3 in the regulation of immune responses, tissue remodeling and oncosuppressive processes led us to explore its potential role in the development of thyroid disorders. In this review, we aimed to highlight what is known, at the state of the art, regarding the connection between the long pentraxin 3 and the main thyroid diseases i.e., nodular thyroid disease, thyroid cancer and autoimmune thyroid disorders.
Collapse
Affiliation(s)
- Damiano Chiari
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- General Surgery Department, Humanitas Mater Domini Clinical Institute, Castellanza, Italy
- *Correspondence: Barbara Pirali, ; Damiano Chiari,
| | - Barbara Pirali
- Endocrinology Clinic, Internal Medicine Department, Humanitas Mater Domini Clinical Institute, Castellanza, Italy
- *Correspondence: Barbara Pirali, ; Damiano Chiari,
| | - Vittoria Perano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | | | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Italy
- Harvey Research Institute, Queen Mary University of London Charterhouse Square, London, United Kingdom
| | | |
Collapse
|
8
|
Bogdan M, Meca AD, Turcu-Stiolica A, Oancea CN, Kostici R, Surlin MV, Florescu C. Insights into the Relationship between Pentraxin-3 and Cancer. Int J Mol Sci 2022; 23:15302. [PMID: 36499628 PMCID: PMC9739619 DOI: 10.3390/ijms232315302] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022] Open
Abstract
Although cancer can be cured if detected early and treated effectively, it is still a leading cause of death worldwide. Tumor development can be limited by an appropiate immune response, but it can be promoted by chronic extensive inflammation through metabolic dysregulation and angiogenesis. In the past decade, numerous efforts have been made in order to identify novel candidates with predictive values in cancer diagnostics. In line with this, researchers have investigated the involvement of pentraxin-3 (PTX-3) in cellular proliferation and immune escape in various types of cancers, although it has not been clearly elucidated. PTX-3 is a member of the long pentraxin subfamily which plays an important role in regulating inflammation, innate immunity response, angiogenesis, and tissue remodeling. Increased synthesis of inflammatory biomarkers and activation of different cellular mechanisms can induce PTX-3 expression in various types of cells (neutrophils, monocytes, lymphocytes, myeloid dendritic cells, fibroblasts, and epithelial cells). PTX-3 has both pro- and anti-tumor functions, thus dual functions in oncogenesis. This review elucidates the potential usefulness of PTX-3 as a serum biomarker in cancer. While future investigations are needed, PTX-3 is emerging as a promising tool for cancer's diagnosis and prognosis, and also treatment monitoring.
Collapse
Affiliation(s)
- Maria Bogdan
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Andreea-Daniela Meca
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Adina Turcu-Stiolica
- Department of Pharmacoeconomics, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Carmen Nicoleta Oancea
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Roxana Kostici
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Marin Valeriu Surlin
- Department of General Surgery, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Cristina Florescu
- Department of Cardiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
9
|
Papale M, Netti GS, Stallone G, Ranieri E. Understanding Mechanisms of RKIP Regulation to Improve the Development of New Diagnostic Tools. Cancers (Basel) 2022; 14:cancers14205070. [PMID: 36291854 PMCID: PMC9600137 DOI: 10.3390/cancers14205070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Raf Kinase Inhibitor protein is a protein that governs multiple intracellular signalling involved primarily in the progression of tumours and the development of metastases. In this review, we discussed the main mechanisms that regulate the expression and activity of RKIP with the aim of identifying the link between the transcriptional, post-transcriptional and post-translational events in different tumour settings. We also tried to analyse the studies that have measured the levels of RKIP in biological fluids in order to highlight the possible advantages and potential of RKIP assessment to obtain an accurate diagnosis and prognosis of various tumours. Abstract One of the most dangerous aspects of cancer cell biology is their ability to grow, spread and form metastases in the main vital organs. The identification of dysregulated markers that drive intracellular signalling involved in the malignant transformation of neoplastic cells and the understanding of the mechanisms that regulate these processes is undoubtedly a key objective for the development of new and more targeted therapies. RAF-kinase inhibitor protein (RKIP) is an endogenous tumour suppressor protein that affects tumour cell survival, proliferation, and metastasis. RKIP might serve as an early tumour biomarker since it exhibits significantly different expression levels in various cancer histologies and it is often lost during metastatic progression. In this review, we discuss the specific impact of transcriptional, post-transcriptional and post-translational regulation of expression and activation/inhibition of RKIP and focus on those tumours for which experimental data on all these factors are available. In this way, we could select how these processes cooperate with RKIP expression in (1) Lung cancer; (2) Colon cancer, (3) Breast cancer; (4) myeloid neoplasm and Multiple Myeloma, (5) Melanoma and (6) clear cell Renal Cell Carcinoma. Furthermore, since RKIP seems to be a key marker of the development of several tumours and it may be assessed easily in various biological fluids, here we discuss the potential role of RKIP dosing in more accessible biological matrices other than tissues. Moreover, this objective may intercept the still unmet need to identify new and more accurate markers for the early diagnosis and prognosis of many tumours.
Collapse
Affiliation(s)
- Massimo Papale
- Unit of Clinical Pathology, Department of Laboratory Diagnostics, University Hospital “Policlinico Foggia”, 71122 Foggia, Italy
- Correspondence:
| | - Giuseppe Stefano Netti
- Unit of Clinical Pathology, Center for Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Giovanni Stallone
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Elena Ranieri
- Unit of Clinical Pathology, Center for Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
10
|
Kolev M, Das M, Gerber M, Baver S, Deschatelets P, Markiewski MM. Inside-Out of Complement in Cancer. Front Immunol 2022; 13:931273. [PMID: 35860237 PMCID: PMC9291441 DOI: 10.3389/fimmu.2022.931273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 12/21/2022] Open
Abstract
The role of complement in cancer has received increasing attention over the last decade. Recent studies provide compelling evidence that complement accelerates cancer progression. Despite the pivotal role of complement in fighting microbes, complement seems to suppress antitumor immunity via regulation of host cell in the tumor microenvironment. Although most studies link complement in cancer to complement activation in the extracellular space, the discovery of intracellular activation of complement, raises the question: what is the relevance of this process for malignancy? Intracellular activation is pivotal for the survival of immune cells. Therefore, complement can be important for tumor cell survival and growth regardless of the role in immunosuppression. On the other hand, because intracellular complement (the complosome) is indispensable for activation of T cells, these functions will be essential for priming antitumor T cell responses. Here, we review functions of complement in cancer with the consideration of extra and intracellular pathways of complement activation and spatial distribution of complement proteins in tumors and periphery and provide our take on potential significance of complement as biomarker and target for cancer therapy.
Collapse
Affiliation(s)
- Martin Kolev
- Discovery, Apellis Pharmaceuticals, Waltham, MA, United States
- *Correspondence: Martin Kolev, ; Maciej M. Markiewski,
| | - Madhumita Das
- Discovery, Apellis Pharmaceuticals, Waltham, MA, United States
| | - Monica Gerber
- Legal Department, Apellis Pharmaceuticals, Waltham, MA, United States
| | - Scott Baver
- Medical Affairs, Apellis Pharmaceuticals, Waltham, MA, United States
| | | | - Maciej M. Markiewski
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
- *Correspondence: Martin Kolev, ; Maciej M. Markiewski,
| |
Collapse
|
11
|
Cases-Perera O, Blanco-Elices C, Chato-Astrain J, Miranda-Fernández C, Campos F, Crespo PV, Sánchez-Montesinos I, Alaminos M, Martín-Piedra MA, Garzón I. Development of secretome-based strategies to improve cell culture protocols in tissue engineering. Sci Rep 2022; 12:10003. [PMID: 35705659 PMCID: PMC9200715 DOI: 10.1038/s41598-022-14115-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/01/2022] [Indexed: 12/14/2022] Open
Abstract
Advances in skin tissue engineering have promoted the development of artificial skin substitutes to treat large burns and other major skin loss conditions. However, one of the main drawbacks to bioengineered skin is the need to obtain a large amount of viable epithelial cells in short periods of time, making the skin biofabrication process challenging and slow. Enhancing skin epithelial cell cultures by using mesenchymal stem cells secretome can favor the scalability of manufacturing processes for bioengineered skin. The effects of three different types of secretome derived from human mesenchymal stem cells, e.g. hADSC-s (adipose cells), hDPSC-s (dental pulp) and hWJSC-s (umbilical cord), were evaluated on cultured skin epithelial cells during 24, 48, 72 and 120 h to determine the potential of this product to enhance cell proliferation and improve biofabrication strategies for tissue engineering. Then, secretomes were applied in vivo in preliminary analyses carried out on Wistar rats. Results showed that the use of secretomes derived from mesenchymal stem cells enhanced currently available cell culture protocols. Secretome was associated with increased viability, proliferation and migration of human skin epithelial cells, with hDPSC-s and hWJSC-s yielding greater inductive effects than hADSC-s. Animals treated with hWJSC-s and especially, hDPSC-s tended to show enhanced wound healing in vivo with no detectable side effects. Mesenchymal stem cells derived secretomes could be considered as a promising approach to cell-free therapy able to improve skin wound healing and regeneration.
Collapse
Affiliation(s)
- O Cases-Perera
- Department of Plastic Surgery, University Hospital Virgen de las Nieves, Granada, Spain
- Doctoral Program in Biomedicine, University of Granada, Granada, Spain
| | - C Blanco-Elices
- Doctoral Program in Biomedicine, University of Granada, Granada, Spain
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - J Chato-Astrain
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - C Miranda-Fernández
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
| | - F Campos
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - P V Crespo
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - I Sánchez-Montesinos
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
- Department of Human Anatomy and Embryology, University of Granada, Granada, Spain
| | - M Alaminos
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain.
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain.
| | - M A Martín-Piedra
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain.
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain.
| | - I Garzón
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| |
Collapse
|
12
|
Netti GS, Franzin R, Stasi A, Spadaccino F, Dello Strologo A, Infante B, Gesualdo L, Castellano G, Ranieri E, Stallone G. Role of Complement in Regulating Inflammation Processes in Renal and Prostate Cancers. Cells 2021; 10:cells10092426. [PMID: 34572075 PMCID: PMC8471315 DOI: 10.3390/cells10092426] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 01/10/2023] Open
Abstract
For decades, the complement system, the central pillar of innate immune response, was recognized as a protective mechanism against cancer cells and the manipulation of complement effector functions in cancer setting offered a great opportunity to improve monoclonal antibody-based cancer immunotherapies. Similarly, cellular senescence, the process of cell cycle arrest that allow DNA and tissue repair has been traditionally thought to be able to suppress tumor progression. However, in recent years, extensive research has identified the complement system and cellular senescence as two main inducers of tumour growth in the context of chronic, persistent inflammation named inflammaging. Here, we discuss the data describing the ambivalent role of senescence in cancer with a particular focus on tumors that are strongly dependent on complement activation and can be understood by a new, senescence-related point of view: prostate cancer and renal cell carcinoma.
Collapse
Affiliation(s)
- Giuseppe Stefano Netti
- Clinical Pathology, Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.S.N.); (F.S.)
| | - Rossana Franzin
- Department of Emergency and Organ Transplantation-Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, 70124 Bari, Italy; (R.F.); (A.S.); (L.G.)
| | - Alessandra Stasi
- Department of Emergency and Organ Transplantation-Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, 70124 Bari, Italy; (R.F.); (A.S.); (L.G.)
| | - Federica Spadaccino
- Clinical Pathology, Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.S.N.); (F.S.)
| | - Andrea Dello Strologo
- Department of Medical and Surgical Sciences-Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), University of Foggia, 71122 Foggia, Italy; (A.D.S.); (B.I.); (G.C.)
| | - Barbara Infante
- Department of Medical and Surgical Sciences-Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), University of Foggia, 71122 Foggia, Italy; (A.D.S.); (B.I.); (G.C.)
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation-Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, 70124 Bari, Italy; (R.F.); (A.S.); (L.G.)
| | - Giuseppe Castellano
- Department of Medical and Surgical Sciences-Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), University of Foggia, 71122 Foggia, Italy; (A.D.S.); (B.I.); (G.C.)
| | - Elena Ranieri
- Clinical Pathology, Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.S.N.); (F.S.)
- Correspondence: (E.R.); (G.S.); Tel.: +39-0881-732611 (E.R.); +39-0881-736002 (G.S.)
| | - Giovanni Stallone
- Department of Medical and Surgical Sciences-Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), University of Foggia, 71122 Foggia, Italy; (A.D.S.); (B.I.); (G.C.)
- Correspondence: (E.R.); (G.S.); Tel.: +39-0881-732611 (E.R.); +39-0881-736002 (G.S.)
| |
Collapse
|
13
|
Divella C, Stasi A, Franzin R, Rossini M, Pontrelli P, Sallustio F, Netti GS, Ranieri E, Lacitignola L, Staffieri F, Crovace AM, Lucarelli G, Ditonno P, Battaglia M, Daha MR, van der Pol P, van Kooten C, Grandaliano G, Gesualdo L, Stallone G, Castellano G. Pentraxin-3-mediated complement activation in a swine model of renal ischemia/reperfusion injury. Aging (Albany NY) 2021; 13:10920-10933. [PMID: 33875620 PMCID: PMC8109140 DOI: 10.18632/aging.202992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 03/26/2021] [Indexed: 11/30/2022]
Abstract
Pentraxins are a family of evolutionarily conserved pattern recognition molecules with pivotal roles in innate immunity and inflammation, such as opsonization of pathogens during bacterial and viral infections. In particular, the long Pentraxin 3 (PTX3) has been shown to regulate several aspects of vascular and tissue inflammation during solid organ transplantation. Our study investigated the role of PTX3 as possible modulator of Complement activation in a swine model of renal ischemia/reperfusion (I/R) injury. We demonstrated that I/R injury induced early PTX3 deposits at peritubular and glomerular capillary levels. Confocal laser scanning microscopy revealed PTX3 deposits co-localizing with CD31+ endothelial cells. In addition, PTX3 was associated with infiltrating macrophages (CD163), dendritic cells (SWC3a) and myofibroblasts (FSP1). In particular, we demonstrated a significant PTX3-mediated activation of classical (C1q-mediated) and lectin (MBL-mediated) pathways of Complement. Interestingly, PTX3 deposits co-localized with activation of the terminal Complement complex (C5b-9) on endothelial cells, indicating that PTX3-mediated Complement activation occurred mainly at the renal vascular level. In conclusion, these data indicate that PTX3 might be a potential therapeutic target to prevent Complement-induced I/R injury.
Collapse
Affiliation(s)
- Chiara Divella
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Alessandra Stasi
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Rossana Franzin
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Michele Rossini
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Paola Pontrelli
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Fabio Sallustio
- Department of Interdisciplinary Medicine, University of Bari, Bari, Italy.,Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Bari, Italy
| | - Giuseppe Stefano Netti
- Clinical Pathology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Elena Ranieri
- Clinical Pathology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Luca Lacitignola
- Veterinary Surgery Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Francesco Staffieri
- Veterinary Surgery Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Alberto Maria Crovace
- Veterinary Surgery Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Renal Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Pasquale Ditonno
- Urology, Andrology and Renal Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Michele Battaglia
- Urology, Andrology and Renal Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Mohamed R Daha
- Department of Nephrology, University of Leiden, Leiden, The Netherlands
| | - Peter van der Pol
- Department of Nephrology, University of Leiden, Leiden, The Netherlands
| | - Cees van Kooten
- Department of Nephrology, University of Leiden, Leiden, The Netherlands
| | | | - Loreto Gesualdo
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Advanced Research center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, Foggia, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Advanced Research center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, Foggia, Italy
| |
Collapse
|
14
|
The Ambivalent Role of miRNAs in Carcinogenesis: Involvement in Renal Cell Carcinoma and Their Clinical Applications. Pharmaceuticals (Basel) 2021; 14:ph14040322. [PMID: 33918154 PMCID: PMC8065760 DOI: 10.3390/ph14040322] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023] Open
Abstract
The analysis of microRNA (miRNAs), small, non-coding endogenous RNA, plays a crucial role in oncology. These short regulatory sequences, acting on thousands of messenger RNAs (mRNAs), modulate gene expression at the transcriptional and post-transcriptional level leading to translational repression or degradation of target molecules. Although their function is required for several physiological processes, such as proliferation, apoptosis and cell differentiation, miRNAs are also responsible for development and/or progression of several cancers, since they may interact with classical tumor pathways. In this review, we highlight recent advances in deregulated miRNAs in cancer focusing on renal cell carcinoma (RCC) and provide an overview of the potential use of miRNA in their clinical settings, such as diagnostic and prognostic markers.
Collapse
|
15
|
Prospective Validation of Pentraxin-3 as a Novel Serum Biomarker to Predict the Risk of Prostate Cancer in Patients Scheduled for Prostate Biopsy. Cancers (Basel) 2021; 13:cancers13071611. [PMID: 33807333 PMCID: PMC8036446 DOI: 10.3390/cancers13071611] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To test and internally validate serum Pentraxin-3 (PTX3) levels as a potential PCa biomarker to predict prostate biopsy (PBx) results. MATERIALS AND METHODS Serum PSA and serum PTX3 were prospectively assessed in patients scheduled for PBx at our Institution due to increased serum PSA levels or abnormal digital rectal examination. Uni- and multivariable logistic regression analysis, area under the receiver operating characteristic curve (AUC), and decision curve analysis (DCA), were used to test the accuracy of serum PTX3 in predicting anyPCa and clinically significant PCa (csPCa) defined as Gleason Grade (GG) ≥ 2. RESULTS Among the 455 eligible patients, PCa was detected in 49% and csPCa in 25%. During univariate analysis, PTX3 outperformed other variables in predicting both anyPCa and csPCa. The addition of PTX3 to multivariable models based on standard clinical variables, significantly increased each model's predictive accuracy for anyPCa (AUC from 0.73 to 0.82; p < 0.001) and csPCa (AUC from 0.79 to 0.83; p < 0.001). At DCA, PTX3, and PTX3, density showed higher net benefit than PSA and PSA density and increased the net benefit of multivariable models in deciding when to perform PBx. CONCLUSIONS Serum PTX3 levels might be of clinical utility in predicting prostate biopsy results. Should our findings be confirmed, this novel reflex test could be used to reduce the number and burden of unnecessary prostate biopsies.
Collapse
|