1
|
Yang R, Roshani D, Gao B, Li P, Shang N. Metallothionein: A Comprehensive Review of Its Classification, Structure, Biological Functions, and Applications. Antioxidants (Basel) 2024; 13:825. [PMID: 39061894 PMCID: PMC11273490 DOI: 10.3390/antiox13070825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Metallothionein is a cysteine-rich protein with a high metal content that is widely found in nature. In addition to heavy metal detoxification, metallothionein is well known as a potent antioxidant. The high sulfhydryl content of metallothionein confers excellent antioxidant activity, enabling it to effectively scavenge free radicals and mitigate oxidative stress damage. In addition, metallothionein can play a neuroprotective role by alleviating oxidative damage in nerve cells, have an anticancer effect by enhancing the ability of normal cells to resist unfavorable conditions through its antioxidant function, and reduce inflammation by scavenging reactive oxygen species. Due to its diverse biological functions, metallothionein has a broad potential for application in alleviating environmental heavy metal pollution, predicting and diagnosing diseases, and developing skin care products and health foods. This review summarizes the recent advances in the classification, structure, biological functions, and applications of metallothionein, focusing on its powerful antioxidant effects and related functions.
Collapse
Affiliation(s)
- Ruoqiu Yang
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, No, 17 Qinghua East Road, Haidian District, Beijing 100083, China; (R.Y.); (B.G.)
| | - Dumila Roshani
- College of Engineering, China Agricultural University, No, 17 Qinghua East Road, Haidian District, Beijing 100083, China;
| | - Boya Gao
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, No, 17 Qinghua East Road, Haidian District, Beijing 100083, China; (R.Y.); (B.G.)
| | - Pinglan Li
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, No, 17 Qinghua East Road, Haidian District, Beijing 100083, China; (R.Y.); (B.G.)
| | - Nan Shang
- College of Engineering, China Agricultural University, No, 17 Qinghua East Road, Haidian District, Beijing 100083, China;
| |
Collapse
|
2
|
Lucas CHG, Mirchia K, Seo K, Najem H, Chen WC, Zakimi N, Foster K, Eaton CD, Cady MA, Choudhury A, Liu SJ, Phillips JJ, Magill ST, Horbinski CM, Solomon DA, Perry A, Vasudevan HN, Heimberger AB, Raleigh DR. Spatial genomic, biochemical and cellular mechanisms underlying meningioma heterogeneity and evolution. Nat Genet 2024; 56:1121-1133. [PMID: 38760638 PMCID: PMC11239374 DOI: 10.1038/s41588-024-01747-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 04/08/2024] [Indexed: 05/19/2024]
Abstract
Intratumor heterogeneity underlies cancer evolution and treatment resistance, but targetable mechanisms driving intratumor heterogeneity are poorly understood. Meningiomas are the most common primary intracranial tumors and are resistant to all medical therapies, and high-grade meningiomas have significant intratumor heterogeneity. Here we use spatial approaches to identify genomic, biochemical and cellular mechanisms linking intratumor heterogeneity to the molecular, temporal and spatial evolution of high-grade meningiomas. We show that divergent intratumor gene and protein expression programs distinguish high-grade meningiomas that are otherwise grouped together by current classification systems. Analyses of matched pairs of primary and recurrent meningiomas reveal spatial expansion of subclonal copy number variants associated with treatment resistance. Multiplexed sequential immunofluorescence and deconvolution of meningioma spatial transcriptomes using cell types from single-cell RNA sequencing show decreased immune infiltration, decreased MAPK signaling, increased PI3K-AKT signaling and increased cell proliferation, which are associated with meningioma recurrence. To translate these findings to preclinical models, we use CRISPR interference and lineage tracing approaches to identify combination therapies that target intratumor heterogeneity in meningioma cell co-cultures.
Collapse
Affiliation(s)
- Calixto-Hope G Lucas
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Kanish Mirchia
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Kyounghee Seo
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Hinda Najem
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - William C Chen
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Naomi Zakimi
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Kyla Foster
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Charlotte D Eaton
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Martha A Cady
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Abrar Choudhury
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - S John Liu
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Stephen T Magill
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Craig M Horbinski
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - David A Solomon
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Arie Perry
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Harish N Vasudevan
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Amy B Heimberger
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Liu X, Xu C, Xiao W, Yan N. Unravelling the role of NFE2L1 in stress responses and related diseases. Redox Biol 2023; 65:102819. [PMID: 37473701 PMCID: PMC10404558 DOI: 10.1016/j.redox.2023.102819] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/02/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023] Open
Abstract
The nuclear factor erythroid 2 (NF-E2)-related factor 1 (NFE2L1, also known as Nrf1) is a highly conserved transcription factor that belongs to the CNC-bZIP subfamily. Its significance lies in its control over redox balance, proteasome activity, and organ integrity. Stress responses encompass a series of compensatory adaptations utilized by cells and organisms to cope with extracellular or intracellular stress initiated by stressful stimuli. Recently, extensive evidence has demonstrated that NFE2L1 plays a crucial role in cellular stress adaptation by 1) responding to oxidative stress through the induction of antioxidative responses, and 2) addressing proteotoxic stress or endoplasmic reticulum (ER) stress by regulating the ubiquitin-proteasome system (UPS), unfolded protein response (UPR), and ER-associated degradation (ERAD). It is worth noting that NFE2L1 serves as a core factor in proteotoxic stress adaptation, which has been extensively studied in cancer and neurodegeneration associated with enhanced proteasomal stress. In these contexts, utilization of NFE2L1 inhibitors to attenuate proteasome "bounce-back" response holds tremendous potential for enhancing the efficacy of proteasome inhibitors. Additionally, abnormal stress adaptations of NFE2L1 and disturbances in redox and protein homeostasis contribute to the pathophysiological complications of cardiovascular diseases, inflammatory diseases, and autoimmune diseases. Therefore, a comprehensive exploration of the molecular basis of NFE2L1 and NFE2L1-mediated diseases related to stress responses would not only facilitate the identification of novel diagnostic and prognostic indicators but also enable the identification of specific therapeutic targets for NFE2L1-related diseases.
Collapse
Affiliation(s)
- Xingzhu Liu
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, 330031, China; School of Biological and Biomedical Sciences, Queen Mary University of London, London, United Kingdom
| | - Chang Xu
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, 330031, China; School of Biological and Biomedical Sciences, Queen Mary University of London, London, United Kingdom
| | - Wanglong Xiao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Nianlong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
4
|
Lucas CH, Mirchia K, Seo K, Najem H, Chen W, Zakimi N, Choudhury A, Liu SJ, Phillips J, Magill S, Horbinski C, Solomon D, Perry A, Vasudevan H, Heimberger A, Raleigh D. Spatial genomic, biochemical, and cellular mechanisms drive meningioma heterogeneity and evolution. RESEARCH SQUARE 2023:rs.3.rs-2921804. [PMID: 37292686 PMCID: PMC10246120 DOI: 10.21203/rs.3.rs-2921804/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Intratumor heterogeneity underlies cancer evolution and treatment resistance1-5, but targetable mechanisms driving intratumor heterogeneity are poorly understood. Meningiomas are the most common primary intracranial tumors and are resistant to all current medical therapies6,7. High-grade meningiomas cause significant neurological morbidity and mortality and are distinguished from low-grade meningiomas by increased intratumor heterogeneity arising from clonal evolution and divergence8. Here we integrate spatial transcriptomic and spatial protein profiling approaches across high-grade meningiomas to identify genomic, biochemical, and cellular mechanisms linking intratumor heterogeneity to the molecular, temporal, and spatial evolution of cancer. We show divergent intratumor gene and protein expression programs distinguish high-grade meningiomas that are otherwise grouped together by current clinical classification systems. Analyses of matched pairs of primary and recurrent meningiomas reveal spatial expansion of sub-clonal copy number variants underlies treatment resistance. Multiplexed sequential immunofluorescence (seqIF) and spatial deconvolution of meningioma single-cell RNA sequencing show decreased immune infiltration, decreased MAPK signaling, increased PI3K-AKT signaling, and increased cell proliferation drive meningioma recurrence. To translate these findings to clinical practice, we use epigenetic editing and lineage tracing approaches in meningioma organoid models to identify new molecular therapy combinations that target intratumor heterogeneity and block tumor growth. Our results establish a foundation for personalized medical therapy to treat patients with high-grade meningiomas and provide a framework for understanding therapeutic vulnerabilities driving intratumor heterogeneity and tumor evolution.
Collapse
|
5
|
Wang XL, Schnoor M, Yin LM. Metallothionein-2: An emerging target in inflammatory diseases and cancers. Pharmacol Ther 2023; 244:108374. [PMID: 36889441 DOI: 10.1016/j.pharmthera.2023.108374] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Metallothionein-2 (MT-2) was originally discovered as a mediator of zinc homeostasis and cadmium detoxification. However, MT-2 has recently received increased attention because altered expression of MT-2 is closely related to various diseases such as asthma and cancers. Several pharmacological strategies have been developed to inhibit or modify MT-2, revealing its potential as drug target in diseases. Therefore, a better understanding of the mechanisms of MT-2 action is warranted to improve drug development for potential clinical applications. In this review, we highlight recent advances in determining the protein structure, regulation, binding partners, and new functions of MT-2 in inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Xue-Ling Wang
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Michael Schnoor
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Avenida IPN 2508, 07360 Mexico City, Mexico
| | - Lei-Miao Yin
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China.
| |
Collapse
|
6
|
Li J, Lei Y, Zhao Y. Metallothionein-2A Protects Cardiomyocytes from Hypoxia/reper-Fusion through Inhibiting p38. Cell Biochem Biophys 2023; 81:69-75. [PMID: 36445616 DOI: 10.1007/s12013-022-01118-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022]
Abstract
The reperfusion of coronary artery blood supply is often accompanied by myocardial hypoxia/reperfusion (H/R) injury, and induced cardiomyocytes apoptosis. The activation of p38 can induce apoptosis, thereby aggravating the myocardial H/R injury. Metallothionein-2A (MT2A) has the functions of anti-apoptosis and protective effect through p38. However, it is not clear that MT2A may protect cardiomyocytes from H/R injury through p38 signaling pathway. Here, we constructed an H/R model for H9c2 cardiomyocytes to explore the protective effect of MT2A on cardiomyocytes apoptosis during the process of H/R through p38 signal pathway. The results revealed that both endogenously overexpressed MT2A and exogenously added MT2A can inhibit the active expression of p-p38 and cleaved caspase-3 under H/R. Based on our results, H/R induced cardiomyocytes apoptosis and activation of p38. And, MT2A can inhibit the active expression of caspase-3 and p38. We found that MT2A can protect cardiomyocytes apoptosis from H/R injury through p38 signaling pathway.
Collapse
Affiliation(s)
- Jike Li
- Cardiovascular Department, Xi'an Hospital of Traditional Chinese Medicine, No. 69, Fengcheng 8th Road, Weiyang District, Xi'an, Shaanxi Province, 710021, China
| | - Yuanlin Lei
- Cardiovascular Department, Xi'an Hospital of Traditional Chinese Medicine, No. 69, Fengcheng 8th Road, Weiyang District, Xi'an, Shaanxi Province, 710021, China
| | - Ying Zhao
- Cardiovascular Surgery Department, First Affiliated Hospital of Hainan Medical University, No. 31, Longhua Road, Haikou, Hainan Province, 570102, China.
| |
Collapse
|
7
|
Bulathge AW, Villones RLE, Herbert FC, Gassensmith JJ, Meloni G. Comparative cisplatin reactivity towards human Zn7-metallothionein-2 and MTF-1 zinc fingers: potential implications in anticancer drug resistance. Metallomics 2022; 14:mfac061. [PMID: 36026541 PMCID: PMC9477119 DOI: 10.1093/mtomcs/mfac061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022]
Abstract
Cis-diamminedichloroplatinum(II) (cisplatin) is a widely used metal-based chemotherapeutic drug for the treatment of cancers. However, intrinsic and acquired drug resistance limit the efficacy of cisplatin-based treatments. Increased production of intracellular thiol-rich molecules, in particular metallothioneins (MTs), which form stable coordination complexes with the electrophilic cisplatin, results in cisplatin sequestration leading to pre-target resistance. MT-1/-2 are overexpressed in cancer cells, and their expression is controlled by the metal response element (MRE)-binding transcription factor-1 (MTF-1), featuring six Cys2His2-type zinc fingers which, upon zinc metalation, recognize specific MRE sequences in the promoter region of MT genes triggering their expression. Cisplatin can efficiently react with protein metal binding sites featuring nucleophilic cysteine and/or histidine residues, including MTs and zinc fingers proteins, but the preferential reactivity towards specific targets with competing binding sites cannot be easily predicted. In this work, by in vitro competition reactions, we investigated the thermodynamic and kinetic preferential reactivity of cisplatin towards human Zn7MT-2, each of the six MTF-1 zinc fingers, and the entire human MTF-1 zinc finger domain. By spectroscopic, spectrometric, and electrophoretic mobility shift assays (EMSA), we demonstrated that cisplatin preferentially reacts with Zn7MT-2 to form Cys4-Pt(II) complexes, resulting in zinc release from MT-2. Zinc transfer from MT-2 to the MTF-1 triggers MTF-1 metalation, activation, and binding to target MRE sequences, as demonstrated by EMSA with DNA oligonucleotides. The cisplatin-dependent MT-mediated MTF-1 activation leading to apo-MT overexpression potentially establishes one of the molecular mechanisms underlying the development and potentiation of MT-mediated pre-target resistance.
Collapse
Affiliation(s)
- Anjala W Bulathge
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX-75080, USA
| | - Rhiza Lyne E Villones
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX-75080, USA
| | - Fabian C Herbert
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX-75080, USA
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX-75080, USA
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX-75080, USA
| |
Collapse
|
8
|
Chen CW, Huang NK, Lee YL, Fan CK, Chen YC, Liu CW, Huang HM. Activin A downregulates the CD69-MT2A axis via p38MAPK to induce erythroid differentiation that sensitizes BCR-ABL-positive cells to imatinib. Exp Cell Res 2022; 417:113219. [DOI: 10.1016/j.yexcr.2022.113219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/25/2022] [Accepted: 05/19/2022] [Indexed: 11/04/2022]
|
9
|
Zhu Y, Sui B, Liu X, Sun J. The reversal of drug resistance by two-dimensional titanium carbide Ti 2 C (2D Ti2C) in non-small-cell lung cancer via the depletion of intracellular antioxidant reserves. Thorac Cancer 2021; 12:3340-3355. [PMID: 34741403 PMCID: PMC8671908 DOI: 10.1111/1759-7714.14208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022] Open
Abstract
Background Chemoresistance is a major barrier limiting the therapeutic efficacy of late stage non‐small cell lung cancer (NSCLC). In this study, we sought to use two‐dimensional titanium carbide (2D Ti2C) to reverse cisplatin resistance in NSCLC. Methods We first achieved favorable properties as a potential anti‐tumor agent. We then compared cell viability and cisplatin uptake in chemoresistant NSCLC cells before and after the use of 2D Ti2C. Afterwards, we explored the effects of 2D Ti2C on intracellular antioxidant reserves, followed by evaluating the subsequent changes in the expression of core drug resistance genes. Finally, we confirmed the tumor inhibitory effect and bio‐safety of 2D Ti2C in a drug‐resistant lung cancer model in nude mice. Results Due to the properties of thin layer, large specific surface area, and abundant reactive groups on the surface, 2D Ti2C can deplete the antioxidant reserve systems such as the glutathione redox buffer system, γ‐glutamylcysteine synthetase (γ‐GCS), glutathione peroxidase (GPx), glutathione‐S‐transferase‐Pi (GST‐π), and metallothionein (MT), thereby increasing the intracellular accumulation of cisplatin and decreasing the expression of drug resistance genes. Conclusions 2D Ti2C can reverse NSCLC chemoresistance both in vitro and in vivo, suggesting that it may potentially become a novel and effective means to treat chemoresistant NSCLC in the clinic.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Baiyan Sui
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xin Liu
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiao Sun
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
10
|
Shimizu M, Koma YI, Sakamoto H, Tsukamoto S, Kitamura Y, Urakami S, Tanigawa K, Kodama T, Higashino N, Nishio M, Shigeoka M, Kakeji Y, Yokozaki H. Metallothionein 2A Expression in Cancer-Associated Fibroblasts and Cancer Cells Promotes Esophageal Squamous Cell Carcinoma Progression. Cancers (Basel) 2021; 13:4552. [PMID: 34572779 PMCID: PMC8464741 DOI: 10.3390/cancers13184552] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/20/2022] Open
Abstract
Esophageal cancer has the sixth highest mortality rate worldwide. Cancer-associated fibroblasts (CAFs) are involved in the progression of various cancers. Previously, we demonstrated an association between high expression of the CAF marker, fibroblast activation protein, and poor prognosis of esophageal squamous cell carcinoma (ESCC). We also established CAF-like cells by indirect co-culture of bone marrow-derived mesenchymal stem cells with ESCC cell lines and found metallothionein 2A (MT2A) to be highly expressed in them. Here, to explore the function of MT2A in CAFs, we silenced MT2A in the CAF-like cells and ESCC cell lines using small interfering RNA. MT2A knockdown in the CAF-like cells suppressed expression and secretion of insulin-like growth factor binding protein 2 (IGFBP2); recombinant IGFBP2 promoted migration and invasiveness of ESCC cells via NFκB, Akt, and Erk signaling pathways. Furthermore, MT2A knockdown in the ESCC cell lines inhibited their growth, migration, and invasiveness. Immunohistochemistry demonstrated that high MT2A expression in the cancer stroma and cancer nest of ESCC tissues correlated with poor prognosis of ESCC patients. Hence, we report that MT2A in CAFs and cancer cells contributes to ESCC progression. MT2A and IGFBP2 are potential novel therapeutic targets in ESCC.
Collapse
Affiliation(s)
- Masaki Shimizu
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.S.); (H.S.); (S.T.); (Y.K.); (S.U.); (K.T.); (T.K.); (N.H.); (M.N.); (M.S.); (H.Y.)
- Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Yu-ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.S.); (H.S.); (S.T.); (Y.K.); (S.U.); (K.T.); (T.K.); (N.H.); (M.N.); (M.S.); (H.Y.)
| | - Hiroki Sakamoto
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.S.); (H.S.); (S.T.); (Y.K.); (S.U.); (K.T.); (T.K.); (N.H.); (M.N.); (M.S.); (H.Y.)
- Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Shuichi Tsukamoto
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.S.); (H.S.); (S.T.); (Y.K.); (S.U.); (K.T.); (T.K.); (N.H.); (M.N.); (M.S.); (H.Y.)
| | - Yu Kitamura
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.S.); (H.S.); (S.T.); (Y.K.); (S.U.); (K.T.); (T.K.); (N.H.); (M.N.); (M.S.); (H.Y.)
- Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Satoshi Urakami
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.S.); (H.S.); (S.T.); (Y.K.); (S.U.); (K.T.); (T.K.); (N.H.); (M.N.); (M.S.); (H.Y.)
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kohei Tanigawa
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.S.); (H.S.); (S.T.); (Y.K.); (S.U.); (K.T.); (T.K.); (N.H.); (M.N.); (M.S.); (H.Y.)
- Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Takayuki Kodama
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.S.); (H.S.); (S.T.); (Y.K.); (S.U.); (K.T.); (T.K.); (N.H.); (M.N.); (M.S.); (H.Y.)
| | - Nobuhide Higashino
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.S.); (H.S.); (S.T.); (Y.K.); (S.U.); (K.T.); (T.K.); (N.H.); (M.N.); (M.S.); (H.Y.)
- Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Mari Nishio
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.S.); (H.S.); (S.T.); (Y.K.); (S.U.); (K.T.); (T.K.); (N.H.); (M.N.); (M.S.); (H.Y.)
| | - Manabu Shigeoka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.S.); (H.S.); (S.T.); (Y.K.); (S.U.); (K.T.); (T.K.); (N.H.); (M.N.); (M.S.); (H.Y.)
| | - Yoshihiro Kakeji
- Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.S.); (H.S.); (S.T.); (Y.K.); (S.U.); (K.T.); (T.K.); (N.H.); (M.N.); (M.S.); (H.Y.)
| |
Collapse
|
11
|
Manna D, Sarkar D. Multifunctional Role of Astrocyte Elevated Gene-1 (AEG-1) in Cancer: Focus on Drug Resistance. Cancers (Basel) 2021; 13:cancers13081792. [PMID: 33918653 PMCID: PMC8069505 DOI: 10.3390/cancers13081792] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Chemotherapy is a major mode of treatment for cancers. However, cancer cells adapt to survive in stressful conditions and in many cases, they are inherently resistant to chemotherapy. Additionally, after initial response to chemotherapy, the surviving cancer cells acquire new alterations making them chemoresistant. Genes that help adapt the cancer cells to cope with stress often contribute to chemoresistance and one such gene is Astrocyte elevated gene-1 (AEG-1). AEG-1 levels are increased in all cancers studied to date and AEG-1 contributes to the development of highly aggressive, metastatic cancers. In this review, we provide a comprehensive description of the mechanism by which AEG-1 augments tumor development with special focus on its ability to regulate chemoresistance. We also discuss potential ways to inhibit AEG-1 to overcome chemoresistance. Abstract Cancer development results from the acquisition of numerous genetic and epigenetic alterations in cancer cells themselves, as well as continuous changes in their microenvironment. The plasticity of cancer cells allows them to continuously adapt to selective pressures brought forth by exogenous environmental stresses, the internal milieu of the tumor and cancer treatment itself. Resistance to treatment, either inherent or acquired after the commencement of treatment, is a major obstacle an oncologist confronts in an endeavor to efficiently manage the disease. Resistance to chemotherapy, chemoresistance, is an important hallmark of aggressive cancers, and driver oncogene-induced signaling pathways and molecular abnormalities create the platform for chemoresistance. The oncogene Astrocyte elevated gene-1/Metadherin (AEG-1/MTDH) is overexpressed in a diverse array of cancers, and its overexpression promotes all the hallmarks of cancer, such as proliferation, invasion, metastasis, angiogenesis and chemoresistance. The present review provides a comprehensive description of the molecular mechanism by which AEG-1 promotes tumorigenesis, with a special emphasis on its ability to regulate chemoresistance.
Collapse
|