1
|
Yang Q, Ju G, He Y. Corneal densitometry: A new evaluation indicator for corneal diseases. Surv Ophthalmol 2024:S0039-6257(24)00122-X. [PMID: 39326741 DOI: 10.1016/j.survophthal.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Corneal densitometry (CD) uses the biological properties of the cornea to visualize the morphology of the cornea and determine the degree of corneal transparency. At present, it is an emerging metric that has shown promise in various clinical diagnosis and evaluation of eye diseases and surgeries. We introduce the different methodologies used to measure CD. Furthermore, we systematically categorize the diagnostic value of CD into high, medium, and low levels based on its clinical significance. By analyzing a wide range of conditions, including keratoconus, postrefractive surgery changes, and other corneal pathologies, we assess the utility of CD in each context. We also discuss the potential implications of these classifications for disease monitoring and prognosis evaluation. Our review underscores the importance of integrating CD assessments into routine clinical practice to enhance the accuracy and effectiveness of diagnostic processes for corneal disorders.
Collapse
Affiliation(s)
- Qing Yang
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, Jilin 130041, China; The Second Clinical Medical College of Jilin University, Changchun, Jilin 130012, China
| | - Gen Ju
- Department of Ophthalmology, Baoji People's Hospital, Baoji, Shaanxi 721000, China
| | - Yuxi He
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, Jilin 130041, China.
| |
Collapse
|
2
|
Malani M, Thodikayil AT, Saha S, Nirmal J. Carboxylated nanofibrillated cellulose empowers moxifloxacin to overcome Staphylococcus aureus biofilm in bacterial keratitis. Carbohydr Polym 2024; 324:121558. [PMID: 37985120 DOI: 10.1016/j.carbpol.2023.121558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/21/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Bacterial keratitis is one of the vision-threatening ocular diseases that is increasing at an alarming rate due to antimicrobial resistance. One of the primary causes of antimicrobial resistance could be biofilm formation, which alters the mechanism and physiology of the microorganisms. Even a potent drug fails to inhibit biofilm due to the extracellular polysaccharide matrix surrounding the bacteria, inhibiting the permeation of drugs. Therefore, we aimed to develop carboxylated nanocellulose fibers loaded with moxifloxacin (Mox-cNFC) as a novel drug delivery system to treat bacterial corneal infection. Nanocellulose fibers were fabricated using a two-step method involving citric acid hydrolysis followed by TEMPO oxidation to introduce carboxylated groups (1.12 mmol/g). The Mox-cNFC particles showed controlled drug release till 40 h through diffusion. In vitro biofilm inhibition studies showed the particle's ability to disrupt the biofilm matrix and enhance the drug penetration to achieve optimal concentrations that inhibit the persister cells (without increasing minimum inhibitory concentration), thereby reducing the bacterial drug-resistant property. In vivo studies revealed the therapeutic potential of Mox-cNFC to treat Staphylococcus aureus-induced bacterial keratitis with once-a-day treatment, unlike neat moxifloxacin. Mox-cNFC could improve patient compliance by reducing the frequency of instillation and a controlled drug release to prevent toxicity.
Collapse
Affiliation(s)
- Manisha Malani
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | | | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Jayabalan Nirmal
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India.
| |
Collapse
|
3
|
Law JJ, Hatcher JB, Mawn LA, LaRue RW, Makadia F, Chen Q, Liu Y, Shieh C. Attitudes and Awareness of Cornea Specialists and Oculoplastic Surgeons toward Methicillin-Resistant Staphylococcus aureus Decolonization. Surg Infect (Larchmt) 2022; 23:590-596. [PMID: 35867008 DOI: 10.1089/sur.2021.378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Methicillin-resistant Staphylococcus aureus (MRSA) decolonization is widely utilized in many medical subspecialities to reduce surgical site infections, but routine ophthalmic implementation has been limited. The aim of this study was to investigate the attitudes and actual practice of corneal specialists and oculoplastic surgeons toward MRSA decolonization as a preventive measure in ophthalmic surgery. Materials and Methods: A web-based survey was sent to cornea specialists and oculoplastic surgeons to assess their knowledge, beliefs, and practices regarding MRSA prophylaxis and the use of MRSA decolonization to prevent post-operative infections. Results: A total of 180 surgeons participated in this study: 71% of respondents agreed that MRSA colonization plays a role in post-operative infection of the eye and adnexal structures; 65% stated that MRSA decolonization could help prevent MRSA infection. Although 41% of respondents would change their management in response to a positive pre-operative MRSA screening result, only 18% performed pre-operative screening. Seventeen percent of respondents indicated that they offer pre-operative decolonization for MRSA-positive patients; the most frequently applied technique was the use of nasal antibiotic agents such as mupirocin, followed by antiseptic baths. Peri-operative MRSA prophylaxis was used by 18% of respondents; pre-operative MRSA decolonization was used in conjunction by 8.5 % of respondents. Conclusions: Although MRSA decolonization has been validated in fields outside of ophthalmology, there has not been widespread adoption of this practice among oculoplastic surgeons and cornea specialists. Prospective MRSA decolonization ophthalmic studies are necessary if evidence-based management guidelines are to be developed.
Collapse
Affiliation(s)
- James J Law
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jeremy B Hatcher
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Louise A Mawn
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Richard W LaRue
- Division of Infectious Diseases, Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Frini Makadia
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Qingxia Chen
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yuhan Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Christine Shieh
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Dong N, Jiang N, Zhao J, Zhao G, Wang T. Sensitive and Enzyme-Free Pathogenic Bacteria Detection Through Self-Circulation of Molecular Beacon. Appl Biochem Biotechnol 2022; 194:3668-3676. [PMID: 35486346 DOI: 10.1007/s12010-022-03948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
Abstract
This research exhibits the design of a feasible, enzyme-free and sensitive fluorescent sensing assay for the detection of Staphylococcus aureus (S. aureus), using self-circulation of molecular beacons. With protein A on S. aureus as identifying target, the capture probe binds on the surface of S. aureus based on interaction between its aptamer section and protein A. Recognition of protein A by aptamer section in capture probe leads to allosterism of capture probe, exposing initiator section to activate the following self-circulation. After multiple circulation-based signal amplification, the method exhibits a favorable detection sensitivity and shows a promising prospect for the keratitis-related pathogenic bacteria detection. The highlights of the sensing assay are as follows: (i) capture probe is designed with aptamer section which endows the method a high selectivity; (ii) signal of bacteria is converted to nucleic acid signal after recognition of target bacteria by capture probe; and (iii) high sensitivity of method is derived from the self-circulation process. Therefore, we believe that the strategy can provide a useful platform for target bacteria detection and thus contribute to the diagnosis of infectious diseases.
Collapse
Affiliation(s)
- Nannan Dong
- Department of Ophthalmology, Zhuji Affiliated Hospital of Shaoxing University, No .9 Jianmin Road Taozhu Street, Zhuji City, 311800, Zhejiang Province, China.
| | - Ning Jiang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang City, 110004, Liaoning Province, China
| | - Jiawei Zhao
- Department of Ophthalmology, Zhuji Affiliated Hospital of Shaoxing University, No .9 Jianmin Road Taozhu Street, Zhuji City, 311800, Zhejiang Province, China
| | - Guangming Zhao
- Department of Ophthalmology, Zhuji Affiliated Hospital of Shaoxing University, No .9 Jianmin Road Taozhu Street, Zhuji City, 311800, Zhejiang Province, China
| | - Tiewei Wang
- Department of Ophthalmology, Zhuji Affiliated Hospital of Shaoxing University, No .9 Jianmin Road Taozhu Street, Zhuji City, 311800, Zhejiang Province, China
| |
Collapse
|
5
|
Tuft S, Somerville TF, Li JPO, Neal T, De S, Horsburgh MJ, Fothergill JL, Foulkes D, Kaye S. Bacterial keratitis: identifying the areas of clinical uncertainty. Prog Retin Eye Res 2021; 89:101031. [PMID: 34915112 DOI: 10.1016/j.preteyeres.2021.101031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022]
Abstract
Bacterial keratitis is a common corneal infection that is treated with topical antimicrobials. By the time of presentation there may already be severe visual loss from corneal ulceration and opacity, which may persist despite treatment. There are significant differences in the associated risk factors and the bacterial isolates between high income and low- or middle-income countries, so that general management guidelines may not be appropriate. Although the diagnosis of bacterial keratitis may seem intuitive there are multiple uncertainties about the criteria that are used, which impacts the interpretation of investigations and recruitment to clinical studies. Importantly, the concept that bacterial keratitis can only be confirmed by culture ignores the approximately 50% of cases clinically consistent with bacterial keratitis in which investigations are negative. The aetiology of these culture-negative cases is unknown. Currently, the estimation of bacterial susceptibility to antimicrobials is based on data from systemic administration and achievable serum or tissue concentrations, rather than relevant corneal concentrations and biological activity in the cornea. The provision to the clinician of minimum inhibitory concentrations of the antimicrobials for the isolated bacteria would be an important step forward. An increase in the prevalence of antimicrobial resistance is a concern, but the effect this has on disease outcomes is yet unclear. Virulence factors are not routinely assessed although they may affect the pathogenicity of bacteria within species and affect outcomes. New technologies have been developed to detect and kill bacteria, and their application to bacterial keratitis is discussed. In this review we present the multiple areas of clinical uncertainty that hamper research and the clinical management of bacterial keratitis, and we address some of the assumptions and dogma that have become established in the literature.
Collapse
Affiliation(s)
- Stephen Tuft
- Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London, EC1V 2PD, UK.
| | - Tobi F Somerville
- Department of Eye and Vision Sciences, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Ji-Peng Olivia Li
- Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London, EC1V 2PD, UK.
| | - Timothy Neal
- Department of Clinical Microbiology, Liverpool Clinical Laboratories, Liverpool University Hospital NHS Foundation Trust, Prescot Street, Liverpool, L7 8XP, UK.
| | - Surjo De
- Department of Clinical Microbiology, University College London Hospitals NHS Foundation Trust, 250 Euston Road, London, NW1 2PG, UK.
| | - Malcolm J Horsburgh
- Department of Infection and Microbiomes, University of Liverpool, Crown Street, Liverpool, L69 7BX, UK.
| | - Joanne L Fothergill
- Department of Eye and Vision Sciences, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Daniel Foulkes
- Department of Eye and Vision Sciences, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Stephen Kaye
- Department of Eye and Vision Sciences, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK.
| |
Collapse
|
6
|
Ueta M, Hosomi K, Park J, Mizuguchi K, Sotozono C, Kinoshita S, Kunisawa J. Categorization of the Ocular Microbiome in Japanese Stevens-Johnson Syndrome Patients With Severe Ocular Complications. Front Cell Infect Microbiol 2021; 11:741654. [PMID: 34869055 PMCID: PMC8640524 DOI: 10.3389/fcimb.2021.741654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/26/2021] [Indexed: 01/15/2023] Open
Abstract
The commensal microbiota is involved in a variety of diseases. Our group has noticed that patients with Stevens–Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) often present with persistent inflammation of the ocular surface, even in the chronic stage, and that this inflammation is exacerbated by colonization of the mucosa by certain bacteria. However, the changes in the composition of the ocular microbiome in SJS/TEN patients with severe ocular complications (SOCs) remain to be fully investigated. Here, we conducted a cross-sectional study of 46 Japanese subjects comprising 9 healthy control subjects and 37 SJS/TEN patients with SOC. The 16S rRNA-based genetic analyses revealed that the diversity of the ocular microbiome was reduced in SJS/TEN patients with SOC compared with that in healthy control subjects. Principal coordinate analysis based on Bray–Curtis distance at the genus level revealed that the relative composition of the ocular microbiome was different in healthy control subjects and SJS/TEN patients with SOC, and that the SJS/TEN patients with SOC could be divided into four groups based on whether their microbiome was characterized by enrichment of species in genus Corynebacterium 1, Neisseriaceae uncultured, or Staphylococcus or by simultaneous enrichment in species in genera Propionibacterium, Streptococcus, Fusobacterium, Lawsonella, and Serratia. Collectively, our findings indicate that enrichment of certain bacteria at the ocular surface could be associated with ocular surface inflammation in SJS/TEN patients with SOC.
Collapse
Affiliation(s)
- Mayumi Ueta
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Jonguk Park
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Kenji Mizuguchi
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan.,Institute for Protein Research, Osaka University, Suita, Japan
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeru Kinoshita
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Graduate School of Medicine, Graduate School of Dentistry, Osaka University, Suita, Japan.,Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
7
|
An Evaluation of a Simplified Impression Membrane Sampling Method for the Diagnosis of Microbial Keratitis. J Clin Med 2021; 10:jcm10235671. [PMID: 34884373 PMCID: PMC8658700 DOI: 10.3390/jcm10235671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
The purpose of this study was to compare bacterial isolation rate using a corneal impression membrane (CIM) and a sharp instrument for obtaining corneal samples from patients with suspected microbial keratitis (MK). Data was retrospectively collected for all patients that had corneal samples taken for presumed MK between May 2014 and May 2020. Prior to May 2017 samples were collected by scraping the edges of the ulcer with a blade. From May 2017, samples were collected by placing a CIM (Millicell cell culture insert) against the ulcer. All corneal samples were processed using the same conventional diagnostic culture method. A total of 3099 corneal samples were included, of which 1214 (39.2%) were corneal scrapes and 1885 (60.9%) CIMs. Microorganisms were isolated from 235 (19.4%) and 1229 (65.2%) cases using a corneal scrape and CIM, respectively (p < 0.001). Of routinely described pathogenic microorganisms, there were significant increases in the isolations of S. aureus (2.4% to 11.3%) and Serratia (0.5% to 1.7%) using the CIM and no significant changes in the isolations of S. pneumoniae and P. aeruginosa. No significant differences were seen between the isolation rates of fungi or Acanthamoeba species. There was a significant increase in the isolation rates of other Streptococcal species (0.7% to 6.9%) and CNS species, specifically, S. epidermidis (2.1% to 26.2%), S. capitis (0.4% to 2.6%) and S. warneri (0.3% to 1.6%) using the CIM. The simplified CIM sampling method is an effective method for collecting corneal samples from patients with presumed MK in clinical practice.
Collapse
|
8
|
Ung L, Chodosh J. Foundational concepts in the biology of bacterial keratitis. Exp Eye Res 2021; 209:108647. [PMID: 34097906 PMCID: PMC8595513 DOI: 10.1016/j.exer.2021.108647] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/28/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Bacterial infections of the cornea, or bacterial keratitis (BK), are notorious for causing rapidly fulminant disease and permanent vision loss, even among treated patients. In the last sixty years, dramatic upward trajectories in the frequency of BK have been observed internationally, driven in large part by the commercialization of hydrogel contact lenses in the late 1960s. Despite this worsening burden of disease, current evidence-based therapies for BK - including broad-spectrum topical antibiotics and, if indicated, topical corticosteroids - fail to salvage vision in a substantial proportion of affected patients. Amid growing concerns of rapidly diminishing antibiotic utility, there has been renewed interest in urgently needed novel treatments that may improve clinical outcomes on an individual and public health level. Bridging the translational gap in the care of BK requires the identification of new therapeutic targets and rational treatment design, but neither of these aims can be achieved without understanding the complex biological processes that determine how bacterial corneal infections arise, progress, and resolve. In this chapter, we synthesize the current wealth of human and animal experimental data that now inform our understanding of basic BK pathophysiology, in context with modern concepts in ocular immunology and microbiology. By identifying the key molecular determinants of clinical disease, we explore how novel treatments can be developed and translated into routine patient care.
Collapse
Affiliation(s)
- Lawson Ung
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Pattem J, Swift T, Rimmer S, Holmes T, MacNeil S, Shepherd J. Development of a novel micro-bead force spectroscopy approach to measure the ability of a thermo-active polymer to remove bacteria from a corneal model. Sci Rep 2021; 11:13697. [PMID: 34211063 PMCID: PMC8249514 DOI: 10.1038/s41598-021-93172-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/15/2021] [Indexed: 01/01/2023] Open
Abstract
Microbial keratitis occurs from the infection of the cornea by fungi and or bacteria. It remains one of the most common global causes of irreversible blindness accounting for 3.5% (36 million) of blind people as of 2015. This paper looks at the use of a bacteria binding polymer designed to bind Staphylococcus aureus and remove it from the corneal surface. Mechanical unbinding measurements were used to probe the interactions of a thermo-active bacteria-binding polymer, highly-branched poly(N-isopropyl acrylamide), functionalised with modified vancomycin end groups (HB-PNIPAM-Van) to bacteria placed on rabbit corneal surfaces studied ex-vivo. This was conducted during sequential temperature phase transitions of HB-PNIPAM-Van-S. aureus below, above and below the lower critical solution temperature (LCST) in 3 stages, in-vitro, using a novel micro-bead force spectroscopy (MBFS) approach via atomic force microscopy (AFM). The effect of temperature on the functionality of HB-PNIPAM-Van-S. aureus showed that the polymer-bacteria complex reduced the work done in removing bacterial aggregates at T > LCST (p < 0.05), exhibiting reversibility at T < LCST (p < 0.05). At T < LCST, the breaking force, number of unbinding events, percentage fitted segments in the short and long range, and the percentage of unbinding events occurring in the long range (> 2.5 µm) increased (p < 0.05). Furthermore, the LCST phase transition temperature showed 100 × more unbinding events in the long-range z-length (> 2.5 µm) compared to S. aureus aggregates only. Here, we present the first study using AFM to assess the reversible mechanical impact of a thermo-active polymer-binding bacteria on a natural corneal surface.
Collapse
Affiliation(s)
- J Pattem
- School of Clinical Dentistry, University of Sheffield, Sheffield, UK. .,National Centre for Molecular Hydrodynamics, and, Soft Matter Biomaterials and Bio-Interfaces, University of Nottingham, The Limes Building, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK.
| | - T Swift
- Polymer and Biomaterials Chemistry Laboratories, School of Chemistry and Biosciences, University of Bradford, Bradford, UK
| | - S Rimmer
- Polymer and Biomaterials Chemistry Laboratories, School of Chemistry and Biosciences, University of Bradford, Bradford, UK
| | - T Holmes
- Department of Oncology and Metabolism, School of Medicine, University of Sheffield, Sheffield, UK
| | - S MacNeil
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, UK
| | - J Shepherd
- School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| |
Collapse
|
10
|
Lee JW, Somerville T, Kaye SB, Romano V. Staphylococcus aureus Keratitis: Incidence, Pathophysiology, Risk Factors and Novel Strategies for Treatment. J Clin Med 2021; 10:jcm10040758. [PMID: 33668633 PMCID: PMC7918096 DOI: 10.3390/jcm10040758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Bacterial keratitis is a devastating condition that can rapidly progress to serious complications if not treated promptly. Certain causative microorganisms such as Staphylococcus aureus and Pseudomonas aeruginosa are notorious for their resistance to antibiotics. Resistant bacterial keratitis results in poorer outcomes such as scarring and the need for surgical intervention. Thorough understanding of the causative pathogen and its virulence factors is vital for the discovery of novel treatments to avoid further antibiotic resistance. While much has been previously reported on P. aeruginosa, S. aureus has been less extensively studied. This review aims to give a brief overview of S. aureus epidemiology, pathophysiology and clinical characteristics as well as summarise the current evidence for potential novel therapies.
Collapse
Affiliation(s)
- Jason W. Lee
- School of Medicine, University of Liverpool, Liverpool L69 3GE, UK;
| | - Tobi Somerville
- Department of Eye and Vision Science, University of Liverpool, Liverpool L7 8TX, UK; (T.S.); (S.B.K.)
- St Paul’s Eye Unit, Royal Liverpool University Hospital, Liverpool L7 8XP, UK
| | - Stephen B. Kaye
- Department of Eye and Vision Science, University of Liverpool, Liverpool L7 8TX, UK; (T.S.); (S.B.K.)
- St Paul’s Eye Unit, Royal Liverpool University Hospital, Liverpool L7 8XP, UK
| | - Vito Romano
- Department of Eye and Vision Science, University of Liverpool, Liverpool L7 8TX, UK; (T.S.); (S.B.K.)
- St Paul’s Eye Unit, Royal Liverpool University Hospital, Liverpool L7 8XP, UK
- Correspondence:
| |
Collapse
|