1
|
Sokolov AY, Volynsky MA, Potapenko AV, Iurkova PM, Zaytsev VV, Nippolainen E, Kamshilin AA. Duality in response of intracranial vessels to nitroglycerin revealed in rats by imaging photoplethysmography. Sci Rep 2023; 13:11928. [PMID: 37488233 PMCID: PMC10366118 DOI: 10.1038/s41598-023-39171-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023] Open
Abstract
Among numerous approaches to the study of migraine, the nitroglycerin (NTG) model occupies a prominent place, but there is relatively insufficient information about how NTG affects intracranial vessels. In this study we aim to assess the effects of NTG on blood-flow parameters in meningeal vessels measured by imaging photoplethysmography (iPPG) in animal experiments. An amplitude of the pulsatile component (APC) of iPPG waveform was assessed before and within 2.5 h after the NTG administration in saline (n = 13) or sumatriptan (n = 12) pretreatment anesthetized rats in conditions of a closed cranial window. In animals of both groups, NTG caused a steady decrease in blood pressure. In 7 rats of the saline group, NTG resulted in progressive increase in APC, whereas decrease in APC was observed in other 6 rats. In all animals in the sumatriptan group, NTG administration was accompanied exclusively by an increase in APC. Diametrically opposite changes in APC due to NTG indicate a dual effect of this drug on meningeal vasomotor activity. Sumatriptan acts as a synergist of the NTG vasodilating action. The results we obtained contribute to understanding the interaction of vasoactive drugs in the study of the headache pathophysiology and methods of its therapy.
Collapse
Affiliation(s)
- Alexey Y Sokolov
- Department of Neuropharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Maxim A Volynsky
- School of Physics and Engineering, ITMO University, Saint Petersburg, Russia
- Laboratory of Functional Materials and Systems for Photonics, Institute of Automation and Control Processes of Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Anastasiia V Potapenko
- Department of Neuropharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Laboratory of Biochemistry, Medical Genetic Center, Saint Petersburg, Russia
| | - Polina M Iurkova
- Laboratory of Functional Materials and Systems for Photonics, Institute of Automation and Control Processes of Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
- Faculty of General Therapy, Saint Petersburg State Pediatric Medical University, Saint Petersburg, Russia
| | - Valeriy V Zaytsev
- Laboratory of Functional Materials and Systems for Photonics, Institute of Automation and Control Processes of Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Ervin Nippolainen
- Laboratory of Functional Materials and Systems for Photonics, Institute of Automation and Control Processes of Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Alexei A Kamshilin
- Laboratory of Functional Materials and Systems for Photonics, Institute of Automation and Control Processes of Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia.
| |
Collapse
|
2
|
He Q, Wang RK. Imaging-photoplethysmography-guided optical microangiography. OPTICS LETTERS 2022; 47:2302-2305. [PMID: 35486784 DOI: 10.1364/ol.452326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
We report a method to image facial cutaneous microvascular perfusion using wide-field imaging photoplethysmography (iPPG) and handheld swept-source optical coherence tomography (OCT). The iPPG system employs a 16-bit-depth camera to provide a 2D wide-field blood pulsation map that is then used as a positioning guidance for OCT imaging of cutaneous microvasculature. We show the results from iPPG and OCT to demonstrate the ability of guided imaging of cutaneous microvasculature, which is potentially useful for the assessment of skin conditions in dermatology and cosmetology.
Collapse
|
3
|
Volynsky MA, Mamontov OV, Osipchuk AV, Zaytsev VV, Sokolov AY, Kamshilin AA. Study of cerebrovascular reactivity to hypercapnia by imaging photoplethysmography to develop a method for intraoperative assessment of the brain functional reserve. BIOMEDICAL OPTICS EXPRESS 2022; 13:184-196. [PMID: 35154863 PMCID: PMC8803018 DOI: 10.1364/boe.443477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/07/2021] [Accepted: 11/29/2021] [Indexed: 05/03/2023]
Abstract
Intraoperative assessment of cerebrovascular reactivity is a relevant problem of neurosurgery. To assess the functional reserve of cerebral blood flow, we suggest using imaging photoplethysmography for measuring changes in cortical perfusion caused by CO2 inhalation. Feasibility of the technique was demonstrated in three groups of anesthetized rats (n=21) with opened and closed cranial windows. Our study for the first time revealed that the hemodynamic response to hypercapnia strongly depends on the cranial state. However, it was shown that regardless of the direction of changes in local and systemic hemodynamics, the ratio of normalized changes in arterial blood pressure and cortical perfusion could be used as a measure of the cerebrovascular functional reserve.
Collapse
Affiliation(s)
- Maxim A. Volynsky
- School of Physics and Engineering, ITMO University, 49 Kronverksky av., 197101 St. Petersburg, Russia
- Laboratory of New Functional Materials for Photonics, Institute of Automation & Control Processes of the Far East Branch of the Russian Academy of Sciences, 5, Radio str., 690041 Vladivostok, Russia
- These authors contributed equally to this work
| | - Oleg V. Mamontov
- Laboratory of New Functional Materials for Photonics, Institute of Automation & Control Processes of the Far East Branch of the Russian Academy of Sciences, 5, Radio str., 690041 Vladivostok, Russia
- Department of Circulation Physiology, Almazov National Medical Research Centre, 2 Akkuratov str., 197341 St. Petersburg, Russia
- These authors contributed equally to this work
| | - Anastasiia V. Osipchuk
- Department of Neuropharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, 6-8 Lev Tolstoy str., 197022 St. Petersburg, Russia
| | - Valery V. Zaytsev
- Laboratory of New Functional Materials for Photonics, Institute of Automation & Control Processes of the Far East Branch of the Russian Academy of Sciences, 5, Radio str., 690041 Vladivostok, Russia
- Department of Circulation Physiology, Almazov National Medical Research Centre, 2 Akkuratov str., 197341 St. Petersburg, Russia
| | - Alexey Y. Sokolov
- Department of Neuropharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, 6-8 Lev Tolstoy str., 197022 St. Petersburg, Russia
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, 6 Makarov emb., 199034 St. Petersburg, Russia
| | - Alexei A. Kamshilin
- Laboratory of New Functional Materials for Photonics, Institute of Automation & Control Processes of the Far East Branch of the Russian Academy of Sciences, 5, Radio str., 690041 Vladivostok, Russia
- Department of Circulation Physiology, Almazov National Medical Research Centre, 2 Akkuratov str., 197341 St. Petersburg, Russia
| |
Collapse
|
4
|
Sokolov AY, Volynsky MA, Zaytsev VV, Osipchuk AV, Kamshilin AA. Advantages of imaging photoplethysmography for migraine modeling: new optical markers of trigemino-vascular activation in rats. J Headache Pain 2021; 22:18. [PMID: 33794769 PMCID: PMC8015037 DOI: 10.1186/s10194-021-01226-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/12/2021] [Indexed: 12/25/2022] Open
Abstract
Background Existent animal models of migraine are not without drawbacks and limitations. The aim of our study was to evaluate imaging photoplethysmography (PPG) as a method of assessing intracranial blood flow in rats and its changes in response to electrical stimulation of dural trigeminal afferents. Methods Experiments were carried out with 32 anesthetized adult male Wistar rats. Trigeminovascular system (TVS) was activated by means of electrical stimulation of dural afferents through a closed cranial window (CCW). Parameters of meningeal blood flow were monitored using a PPG imaging system under green illumination with synchronous recording of an electrocardiogram (ECG) and systemic arterial blood pressure (ABP). Two indicators related to blood-flow parameters were assessed: intrinsic optical signals (OIS) and the amplitude of pulsatile component (APC) of the PPG waveform. Moreover, we carried out pharmacological validation of these indicators by determining their sensitivity to anti-migraine drugs: valproic acid and sumatriptan. For statistical analysis the non-parametric tests with post-hoc Bonferroni correction was used. Results Significant increase of both APC and OIS was observed due to CCW electrical stimulation. Compared to saline (n = 11), intravenous administration of both the sumatriptan (n = 11) and valproate (n = 10) by using a cumulative infusion regimen (three steps performed 30 min apart) lead to significant inhibitory effect on the APC response to the stimulation. In contrast, intravenous infusion of any substance or saline did not affect the OIS response to the stimulation. It was found that infusion of either sumatriptan or valproate did not affect the response of ABP or heart rate to the stimulation. Conclusions Imaging PPG can be used in an animal migraine model as a method for contactless assessment of intracranial blood flow. We have identified two new markers of TVS activation, one of which (APC) was pharmacologically confirmed to be associated with migraine. Monitoring of changes in APC caused by CCW electrical stimulation (controlling efficiency of stimulation by OIS) can be considered as a new way to assess the peripheral mechanism of action of anti-migraine interventions.
Collapse
Affiliation(s)
- Alexey Y Sokolov
- Department of Neuropharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia.,Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Maxim A Volynsky
- Faculty of Applied Optics, ITMO University, Saint Petersburg, Russia
| | - Valery V Zaytsev
- Faculty of Applied Optics, ITMO University, Saint Petersburg, Russia.,Research Laboratory of Neuromodulation, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Anastasiia V Osipchuk
- Department of Neuropharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Alexei A Kamshilin
- Research Laboratory of Neuromodulation, Almazov National Medical Research Centre, Saint Petersburg, Russia. .,Laboratory of New Functional Materials for Photonics, Institute of Automation and Control, Russian Academy of Sciences, Vladivostok, Russia.
| |
Collapse
|