1
|
Zhang X, Fan Y, Shen Z, Chen Z, You W. Identifying immune-related prognostic biomarkers in osteosarcoma: Development and validation of the tumor immune microenvironment risk model based on analysis of TCGA. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 38462917 DOI: 10.1002/tox.24208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVE Osteosarcoma is a rare and aggressive malignancy with limited effective therapeutic options. This study aimed to identify immune-related prognostic biomarkers and develop a prognostic model for osteosarcoma. METHODS We performed integrated analysis of transcriptomic data and immune cell infiltration profiles of 84 osteosarcoma samples from the Cancer Genome Atlas (TCGA) database. Time-dependent receiver operating characteristic (ROC) curve analysis was used to assess the prognostic value of the TIMErisk model. We also performed functional annotation and pathway enrichment analyses to explore the potential mechanisms underlying the TIMErisk model. RESULTS We identified a seven-gene TIMErisk model (C2, APBB1IP, BST2, TRPV2, CCL5, GBP1, and F13A1) that was independently associated with overall survival of osteosarcoma patients. The TIMErisk model showed significant associations with immune cell infiltration and immunosuppressive gene expression. In addition, the TIMErisk model was associated with drug sensitivity, and we found that several immune checkpoint genes were significantly differentially expressed between high- and low-TIMErisk groups. Functional annotation and pathway enrichment analyses revealed that the TIMErisk model was associated with multiple immune-related pathways, including antigen processing and presentation, cytokine-cytokine receptor interaction, and T cell receptor signaling pathway. CONCLUSION Our study identified a novel TIME-based prognostic model for osteosarcoma that incorporates immune-related genes and can be used to predict patient prognosis and response to immunotherapy. Our findings highlight the importance of the TIME microenvironment in osteosarcoma progression and suggest that immune-related biomarkers may have clinical significance in the management of osteosarcoma.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yizhe Fan
- Department of Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhongyuan Shen
- Department of Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiyu Chen
- Department of Traumatology & Orthopedics, Wuxi Hospital Affiliated of Nanjing University of Chinese Medicine, Wuxi, China
| | - Wulin You
- Department of Traumatology & Orthopedics, Wuxi Hospital Affiliated of Nanjing University of Chinese Medicine, Wuxi, China
| |
Collapse
|
2
|
Yoshida K, Htike K, Eguchi T, Kawai H, Eain HS, Tran MT, Sogawa C, Umemori K, Ogawa T, Kanemoto H, Ono K, Nagatsuka H, Sasaki A, Ibaragi S, Okamoto K. Rab11 suppresses head and neck carcinoma by regulating EGFR and EpCAM exosome secretion. J Oral Biosci 2024; 66:205-216. [PMID: 38072191 DOI: 10.1016/j.job.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 03/08/2024]
Abstract
OBJECTIVES Rab11(Rab11a and Rab11b) localizes primarily along recycling endosomes in cells and is involved in various intracellular trafficking processes, including membrane receptor recycling and secretion of exosomes or small extracellular vesicles (EVs). Although Rab11 is closely associated with the progression and metastasis of various cancer types, little is known about Rab11' role in head and neck squamous cell carcinoma (HNSCC). In this study, we investigated the roles of Rab11a and Rab11b in HNSCC. METHODS The clinical significance of Rab11 expression in HNSCC was investigated using a public database and tissue microarray analysis. Stable cell lines with loss and gain of Rab11a or Rab11b were originally established to investigate their roles in the proliferative, migratory, and invasive capabilities of HNSCC cells. RESULTS Database analysis revealed a significant association between Rab11b mRNA expression and a favorable patient survival rate in HNSCC. Tissue microarray analysis revealed that Rab11b expression was the highest in normal tissues and gradually decreased across the stages of HNSCC progression. Overexpression of Rab11a or Rab11b resulted in a decrease in epidermal growth factor receptor (EGFR), Epithelial cell adhesion molecule (EpCAM) exosome secretion, and the migratory and invasive potential of HNSCC cells. The knockdown of Rab11a or Rab11b increased EpCAM/CD9 exosome secretion in addition to the migratory and invasive potential of HNSCC cells. CONCLUSIONS Rab11 suppresses HNSCC by regulating EGFR recycling and EpCAM exosome secretion in HNSCC cells. Our results indicate that Rab11b is a superior prognostic indicator of HNSCC and holds promise for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kunihiro Yoshida
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan; Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Kaung Htike
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan; Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Htoo Shwe Eain
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Manh Tien Tran
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Chiharu Sogawa
- Department of Clinical Engineering, Faculty of Life Sciences, Hiroshima Institute of Technology, Hiroshima, 731-5197, Japan
| | - Koki Umemori
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Tatsuo Ogawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Hideka Kanemoto
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Kisho Ono
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Akira Sasaki
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Soichiro Ibaragi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| |
Collapse
|
3
|
Ge D, Chen J, Zhao Z, Sui B, Liang F, Wang H. Characterizing the function-related specific assembly pattern of matrix metalloproteinase-14 by dSTORM imaging. Talanta 2023; 260:124523. [PMID: 37105082 DOI: 10.1016/j.talanta.2023.124523] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023]
Abstract
As transmembrane proteolytic enzyme, matrix metalloproteinase-14 (MMP14) regulates cell migration and cancer metastasis, but how it works at the single molecule level is unclear. Molecular localization is closely related to its function, and revealing its spatial assemble details is thus helpful to understand bio-function. Here, we apply aptamer probe and dSTORM to characterize MMP14 distribution. With demonstrating labeling properties of the probe, we investigate the specific distributed pattern of MMP14 on various cell membranes with different migratory capacities, and find that MMP14 mostly aggregate in clustering state, which becomes more significant with enhancing its hydrolysis efficiency on high-migratory cells. Lots of MMP14 are revealed to be co-localized with its substrate PTK7, and this colocalization decreases with weakening cell migration, suggesting that MMP14 may coordinate cell migration by altering its spatial relationship with substrate proteins. This work will promote a deep understanding of the roles of MMP14 in cell migration and cancer metastasis.
Collapse
Affiliation(s)
- Dian Ge
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei, 430081, China
| | - Junling Chen
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei, 430081, China.
| | - Zhiyong Zhao
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei, 430081, China
| | - Binglin Sui
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei, 430081, China
| | - Feng Liang
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei, 430081, China.
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Research Center of Biomembranomics, 5625 Renmin Street, Changchun, Jilin, 130022, China.
| |
Collapse
|
4
|
Subrahmanyam N, Yathavan B, Yu SM, Ghandehari H. Targeting Intratibial Osteosarcoma Using Water-Soluble Copolymers Conjugated to Collagen Hybridizing Peptides. Mol Pharm 2023; 20:1670-1680. [PMID: 36724294 PMCID: PMC10799843 DOI: 10.1021/acs.molpharmaceut.2c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Osteosarcoma (OS) is the most common form of primary malignant bone cancer in adolescents. Over the years, OS prognosis has greatly improved due to adjuvant and neoadjuvant (preoperative) chemotherapeutic treatment, increasing the chances of successful surgery and reducing the need for limb amputation. However, chemotherapeutic treatment to treat OS is limited by off-target toxicities and requires improved localization at the tumor site. Collagen, the main constituent of bone tissue, is extensively degraded and remodeled in OS, leading to an increased availability of denatured (monomeric) collagen. Collagen hybridizing peptides (CHPs) comprise a class of peptides rationally designed to selectively bind to denatured collagen. In this work, we have conjugated CHPs as targeting moieties to water-soluble N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers to target OS tumors. We demonstrated increased accumulation of collagen-targeted HPMA copolymer-CHP conjugates compared to nontargeted HPMA copolymers, as well as increased retention compared to both nontargeted copolymers and CHPs, in a murine intratibial OS tumor model. Furthermore, we used microcomputed tomography analysis to evaluate the bone microarchitecture and correlated bone morphometric parameters (porosity, bone volume, and surface area) with maximum accumulation (Smax) and accumulation at 168 h postinjection (S168) of the copolymers at the tumor. Our results provide the foundation for the use of HPMA copolymer-CHP conjugates as targeted drug delivery systems in OS tumors.
Collapse
Affiliation(s)
- Nithya Subrahmanyam
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, Utah 84112, United States
| | - Bhuvanesh Yathavan
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, Utah 84112, United States
| | - S Michael Yu
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Hamidreza Ghandehari
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, Utah 84112, United States
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
5
|
Identification of LTF as a Prognostic Biomarker for Osteosarcoma. JOURNAL OF ONCOLOGY 2022; 2022:4656661. [PMID: 35096061 PMCID: PMC8799371 DOI: 10.1155/2022/4656661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022]
Abstract
Osteosarcoma remains a major health problem in teenagers. However, its pathogenesis mechanism remains not fully elucidated. This study aims to identify the prognostic biomarkers for osteosarcoma. In this study, we selected genes with a median absolute deviation (MAD) value of the top 5000 in the GSE32981 dataset for subsequent analysis. Weighted correlation network analysis (WGCNA) was used to construct a coexpression network. WGCNA showed that the tan module and midnight blue module were highly correlated with origin and metastases of osteosarcoma, respectively. Enrichment analysis was conducted using genes in the tan module and midnight blue module. A gene coexpression network was constructed by calculating the Spearman correlation coefficients. Four key genes (LTF, C10orf107, HIST1H2AK, and NEXN) were identified to be correlated with the prognosis of osteosarcoma patients. LTF has the highest AUC value, and its effect on osteosarcoma cells was then evaluated. The effect of LTF overexpression on proliferation, migration, and invasion of MG63 and 143B cells was detected by the CCK-8 assay, transwell cell migration assay, and transwell invasion assay, respectively. The overexpression of LTF promoted the proliferation, migration, and invasion of MG63 and 143B cells. In conclusion, LTF may serve as a prognostic biomarker for osteosarcoma.
Collapse
|
6
|
Guo S, Wu X, Lei T, Zhong R, Wang Y, Zhang L, Zhao Q, Huang Y, Shi Y, Wu L. The Role and Therapeutic Value of Syndecan-1 in Cancer Metastasis and Drug Resistance. Front Cell Dev Biol 2022; 9:784983. [PMID: 35118073 PMCID: PMC8804279 DOI: 10.3389/fcell.2021.784983] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/03/2021] [Indexed: 12/17/2022] Open
Abstract
Metastasis and relapse are major causes of cancer-related fatalities. The elucidation of relevant pathomechanisms and adoption of appropriate countermeasures are thus crucial for the development of clinical strategies that inhibit malignancy progression as well as metastasis. An integral component of the extracellular matrix, the type 1 transmembrane glycoprotein syndecan-1 (SDC-1) binds cytokines and growth factors involved in tumor microenvironment modulation. Alterations in its localization have been implicated in both cancer metastasis and drug resistance. In this review, available data regarding the structural characteristics, shedding process, and nuclear translocation of SDC-1 are detailed with the aim of highlighting strategies directly targeting SDC-1 as well as SDC-1-mediated carcinogenesis.
Collapse
Affiliation(s)
- Sen Guo
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - XinYi Wu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Lei
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Zhong
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - YiRan Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liang Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - QingYi Zhao
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Huang
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Yin Shi
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Outpatient Department, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Yin Shi, ; Luyi Wu,
| | - Luyi Wu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Yin Shi, ; Luyi Wu,
| |
Collapse
|
7
|
Abstract
Osteosarcoma is the most common primary bone malignancy in adolescents. Its high propensity to metastasize is the leading cause for treatment failure and poor prognosis. Although the research of osteosarcoma has greatly expanded in the past decades, the knowledge and new therapy strategies targeting metastatic progression remain sparse. The prognosis of patients with metastasis is still unsatisfactory. There is resonating urgency for a thorough and deeper understanding of molecular mechanisms underlying osteosarcoma to develop innovative therapies targeting metastasis. Toward the goal of elaborating the characteristics and biological behavior of metastatic osteosarcoma, it is essential to combine the diverse investigations that are performed at molecular, cellular, and animal levels from basic research to clinical translation spanning chemical, physical sciences, and biology. This review focuses on the metastatic process, regulatory networks involving key molecules and signaling pathways, the role of microenvironment, osteoclast, angiogenesis, metabolism, immunity, and noncoding RNAs in osteosarcoma metastasis. The aim of this review is to provide an overview of current research advances, with the hope to discovery druggable targets and promising therapy strategies for osteosarcoma metastasis and thus to overcome this clinical impasse.
Collapse
Affiliation(s)
- Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Gao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Wang JH, Zeng Z, Sun J, Chen Y, Gao X. A novel small-molecule antagonist enhances the sensitivity of osteosarcoma to cabozantinib in vitro and in vivo by targeting DNMT-1 correlated with disease severity in human patients. Pharmacol Res 2021; 173:105869. [PMID: 34481973 DOI: 10.1016/j.phrs.2021.105869] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/21/2021] [Accepted: 08/31/2021] [Indexed: 12/17/2022]
Abstract
Advanced osteosarcoma (OSA) is highly aggressive and can lead to distant metastasis or recurrence. Here, a novel small-molecule inhibitor/antagonist of DNA methyltransferase 1 (DNMT-1) named DI-1 (inhibitor of DNMT-1) was explored to enhance the antitumor effect of a molecular-targeted agent, cabozantinib, on OSA cell lines. In patients with OSA, expression of DNMT-1 was negatively related with that of microRNA (miR)-34a and associated with a poor prognosis. In OSA cell lines (OSA cell line U2OS and an OSA cell line U2OSR resistance to cabozantinib), DI-1 treatment enhanced miR-34a expression by inhibiting hypermethylation of the promoter region of miR-34a mediated by DNMT-1. DI-1 enhanced the sensitivity of OSA cells (U2OS, 143B and MG63) to cabozantinib and other molecular-targeted agents by enhancing miR-34a expression and repressing activation of the Notch pathway. Mechanistically, DI-1 repressed recruitment of DNMT-1 to the promoter region of miR-34a and, in turn, decreased the methylation rate in the promoter region of miR-34a in OSA cells. These results suggest that repressing DNMT-1 activation by DI-1 enhances miR-34a expression in OSA cells and could be a promising therapeutic strategy for OSA.
Collapse
Affiliation(s)
- Ji-Hai Wang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan Province, China.
| | - Zhen Zeng
- Department of Liver Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China.
| | - Jie Sun
- Department of Liver Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China.
| | - Yan Chen
- Department of Liver Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China.
| | - Xudong Gao
- Department of Liver Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
9
|
The Collagen Receptor uPARAP in Malignant Mesothelioma: A Potential Diagnostic Marker and Therapeutic Target. Int J Mol Sci 2021; 22:ijms222111452. [PMID: 34768883 PMCID: PMC8583732 DOI: 10.3390/ijms222111452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Malignant mesothelioma (MM) is a highly aggressive cancer with limited therapeutic options. We have previously shown that the endocytic collagen receptor, uPARAP, is upregulated in certain cancers and can be therapeutically targeted. Public RNA expression data display uPARAP overexpression in MM. Thus, to evaluate its potential use in diagnostics and therapy, we quantified uPARAP expression by immunohistochemical H-score in formalin-fixed paraffin-embedded bioptic/surgical human tissue samples and tissue microarrays. We detected pronounced upregulation of uPARAP in the three main MM subtypes compared to non-malignant reactive mesothelial proliferations, with higher expression in sarcomatoid and biphasic than in epithelioid MM. The upregulation appeared to be independent of patients’ asbestos exposure and unaffected after chemotherapy. Using immunoblotting, we demonstrated high expression of uPARAP in MM cell lines and no expression in a non-malignant mesothelial cell line. Moreover, we showed the specific internalization of an anti-uPARAP monoclonal antibody by the MM cell lines using flow cytometry-based assays and confocal microscopy. Finally, we demonstrated the sensitivity of these cells towards sub-nanomolar concentrations of an antibody-drug conjugate formed with the uPARAP-directed antibody and a potent cytotoxin that led to efficient, uPARAP-specific eradication of the MM cells. Further studies on patient cohorts and functional preclinical models will fully reveal whether uPARAP could be exploited in diagnostics and therapeutic targeting of MM.
Collapse
|
10
|
Qi W, Yan Q, Lv M, Song D, Wang X, Tian K. Prognostic Signature of Osteosarcoma Based on 14 Autophagy-Related Genes. Pathol Oncol Res 2021; 27:1609782. [PMID: 34335109 PMCID: PMC8322075 DOI: 10.3389/pore.2021.1609782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022]
Abstract
Background: Osteosarcoma is a common malignancy of bone with inferior survival outcome. Autophagy can exert multifactorial influence on tumorigenesis and tumor progression. However, the specific function of genes related to autophagy in the prognosis of osteosarcoma patients remains unclear. Herein, we aimed to explore the association of genes related to autophagy with the survival outcome of osteosarcoma patients. Methods: The autophagy-associated genes that were related to the prognosis of osteosarcoma were optimized by LASSO Cox regression analysis. The survival of osteosarcoma patients was forecasted by multivariate Cox regression analysis. The immune infiltration status of 22 immune cell types in osteosarcoma patients with high and low risk scores was compared by using the CIBERSORT tool. Results: The risk score model constructed according to 14 autophagy-related genes (ATG4A, BAK1, BNIP3, CALCOCO2, CCL2, DAPK1, EGFR, FAS, GRID2, ITGA3, MYC, RAB33B, USP10, and WIPI1) could effectively predict the prognosis of patients with osteosarcoma. A nomogram model was established based on risk score and metastasis. Conclusion: Autophagy-related genes were identified as pivotal prognostic signatures, which could guide the clinical decision making in the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Wei Qi
- Department of West Hospital Orthopaedic Trauma, Zibo Central Hospital, Zibo, China
| | - Qian Yan
- Department of Information Section, Zibo Central Hospital, Zibo, China
| | - Ming Lv
- Department of West Hospital Orthopaedic Trauma, Zibo Central Hospital, Zibo, China
| | - Delei Song
- Department of West Hospital Orthopaedic Trauma, Zibo Central Hospital, Zibo, China
| | - Xianbin Wang
- Department of Eastern Hospital Orthopaedic Trauma, Zibo Central Hospital, Zibo, China
| | - Kangsong Tian
- Department of West Hospital Orthopaedic Trauma, Zibo Central Hospital, Zibo, China
| |
Collapse
|
11
|
Nørregaard KS, Jürgensen HJ, Gårdsvoll H, Engelholm LH, Behrendt N, Søe K. Osteosarcoma and Metastasis Associated Bone Degradation-A Tale of Osteoclast and Malignant Cell Cooperativity. Int J Mol Sci 2021; 22:ijms22136865. [PMID: 34202300 PMCID: PMC8269025 DOI: 10.3390/ijms22136865] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/28/2022] Open
Abstract
Cancer-induced bone degradation is part of the pathological process associated with both primary bone cancers, such as osteosarcoma, and bone metastases originating from, e.g., breast, prostate, and colon carcinomas. Typically, this includes a cancer-dependent hijacking of processes also occurring during physiological bone remodeling, including osteoclast-mediated disruption of the inorganic bone component and collagenolysis. Extensive research has revealed the significance of osteoclast-mediated bone resorption throughout the course of disease for both primary and secondary bone cancer. Nevertheless, cancer cells representing both primary bone cancer and bone metastasis have also been implicated directly in bone degradation. We will present and discuss observations on the contribution of osteoclasts and cancer cells in cancer-associated bone degradation and reciprocal modulatory actions between these cells. The focus of this review is osteosarcoma, but we will also include relevant observations from studies of bone metastasis. Additionally, we propose a model for cancer-associated bone degradation that involves a collaboration between osteoclasts and cancer cells and in which both cell types may directly participate in the degradation process.
Collapse
Affiliation(s)
- Kirstine Sandal Nørregaard
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; (H.J.J.); (H.G.); (L.H.E.); (N.B.)
- Correspondence: ; Tel.: +45-3545-6030
| | - Henrik Jessen Jürgensen
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; (H.J.J.); (H.G.); (L.H.E.); (N.B.)
| | - Henrik Gårdsvoll
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; (H.J.J.); (H.G.); (L.H.E.); (N.B.)
| | - Lars Henning Engelholm
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; (H.J.J.); (H.G.); (L.H.E.); (N.B.)
| | - Niels Behrendt
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; (H.J.J.); (H.G.); (L.H.E.); (N.B.)
| | - Kent Søe
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark;
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, 5000 Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|