1
|
Ren P, Hou G, Ma M, Zhuang Y, Huang J, Tan M, Wu D, Luo G, Zhang Z, Rong H. Enhanced putamen functional connectivity underlies altered risky decision-making in age-related cognitive decline. Sci Rep 2023; 13:6619. [PMID: 37095127 PMCID: PMC10126002 DOI: 10.1038/s41598-023-33634-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023] Open
Abstract
Risky decision-making is critical to survival and development, which has been compromised in elderly populations. However, the neural substrates of altered financial risk-taking behavior in aging are still under-investigated. Here we examined the intrinsic putamen network in modulating risk-taking behaviors of Balloon Analogue Risk Task in healthy young and older adults using resting-state fMRI. Compared with the young group, the elderly group showed significantly different task performance. Based on the task performance, older adults were further subdivided into two subgroups, showing young-like and over-conservative risk behaviors, regardless of cognitive decline. Compared with young adults, the intrinsic pattern of putamen connectivity was significantly different in over-conservative older adults, but not in young-like older adults. Notably, age-effects on risk behaviors were mediated via the putamen functional connectivity. In addition, the putamen gray matter volume showed significantly different relationships with risk behaviors and functional connectivity in over-conservative older adults. Our findings suggest that reward-based risky behaviors might be a sensitive indicator of brain aging, highlighting the critical role of the putamen network in maintaining optimal risky decision-making in age-related cognitive decline.
Collapse
Affiliation(s)
- Ping Ren
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China.
| | - Gangqiang Hou
- Department of Radiology, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Manxiu Ma
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, Australia
| | - Yuchuan Zhuang
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
| | - Jiayin Huang
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Meiling Tan
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Donghui Wu
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Guozhi Luo
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Zhiguo Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Han Rong
- Department of Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Zhang X, Wen K, Han J, Chen H. The Neural Processes in Food Decision-making and their Effect on Daily Diet Management in Successful and Unsuccessful Restrained Eaters. Neuroscience 2023; 517:1-17. [PMID: 36764599 DOI: 10.1016/j.neuroscience.2023.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/08/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023]
Abstract
This study aimed to explore the neural mechanisms underlying food decision making in unsuccessful restrained eaters (US-REs) and successful restrained eaters (S-REs). During a functional magnetic resonance imaging scan, participants were required to choose between pairs of high- and low-calorie foods under the following conditions: the congruent condition (choose between high- and low-calorie foods with the same level of tastiness) and incongruent condition (choose between high-calorie foods tastier than the corresponding low-calorie foods). Subsequently, the participants' diets were monitored for one week. The behavioral results showed that US-REs (n = 28) chose more high-calorie foods than S-REs (n = 26); in contrast, S-REs spent more time in choosing for the incongruent than the congruent condition. The fMRI results found that US-REs exhibited more activity in reward regions (caudate and thalamus) than S-REs in the congruent condition. In the incongruent condition, S-REs showed stronger functional connectivity between the conflict-monitoring region (anterior cingulate cortex) and inhibitory-control regions (inferior frontal gyrus [IFG] and medial frontal gyrus) than US-REs. In both the conditions, increased activation of the insula, putamen, middle frontal gyrus, and IFG could predict increased food intake among US-REs in the following week. Furthermore, in both the conditions, increased IFG activation could predict decreased food cravings among S-REs during the following week. Our results suggest that US-REs have a strong reward response to food. Compared to US-REs, S-REs are more guided more by the goal of weight control, and exhibit strong functional connections between the conflict-monitoring and inhibitory-control regions. Therefore, eating enjoyment and weight-control goals influence restrained eating in daily life.
Collapse
Affiliation(s)
- Xuemeng Zhang
- School of Psychology, Southwest University, Chongqing, China; Research Center for Brain and Cognitive Science, Chongqing Normal University, Chongqing, China
| | - Ke Wen
- Research Center for Brain and Cognitive Science, Chongqing Normal University, Chongqing, China
| | - Jinfeng Han
- School of Psychology, Southwest University, Chongqing, China
| | - Hong Chen
- School of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
3
|
Peng-Li D, Alves Da Mota P, Correa CMC, Chan RCK, Byrne DV, Wang QJ. “Sound” Decisions: The Combined Role of Ambient Noise and Cognitive Regulation on the Neurophysiology of Food Cravings. Front Neurosci 2022; 16:827021. [PMID: 35250463 PMCID: PMC8888436 DOI: 10.3389/fnins.2022.827021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 12/24/2022] Open
Abstract
Our ability to evaluate long-term goals over immediate rewards is manifested in the brain’s decision circuit. Simplistically, it can be divided into a fast, impulsive, reward “system 1” and a slow, deliberate, control “system 2.” In a noisy eating environment, our cognitive resources may get depleted, potentially leading to cognitive overload, emotional arousal, and consequently more rash decisions, such as unhealthy food choices. Here, we investigated the combined impact of cognitive regulation and ambient noise on food cravings through neurophysiological activity. Thirty-seven participants were recruited for an adapted version of the Regulation of Craving (ROC) task. All participants underwent two sessions of the ROC task; once with soft ambient restaurant noise (∼50 dB) and once with loud ambient restaurant noise (∼70 dB), while data from electroencephalography (EEG), electrodermal activity (EDA), and self-reported craving were collected for all palatable food images presented in the task. The results indicated that thinking about future (“later”) consequences vs. immediate (“now”) sensations associated with the food decreased cravings, which were mediated by frontal EEG alpha power. Likewise, “later” trials also increased frontal alpha asymmetry (FAA) —an index for emotional motivation. Furthermore, loud (vs. soft) noise increased alpha, beta, and theta activity, but for theta activity, this was solely occurring during “later” trials. Similarly, EDA signal peak probability was also higher during loud noise. Collectively, our findings suggest that the presence of loud ambient noise in conjunction with prospective thinking can lead to the highest emotional arousal and cognitive load as measured by EDA and EEG, respectively, both of which are important in regulating cravings and decisions. Thus, exploring the combined effects of interoceptive regulation and exteroceptive cues on food-related decision-making could be methodologically advantageous in consumer neuroscience and entail theoretical, commercial, and managerial implications.
Collapse
Affiliation(s)
- Danni Peng-Li
- Food Quality Perception and Society Team, iSENSE Lab, Department of Food Science, Aarhus University, Aarhus, Denmark
- Sino-Danish College (SDC), University of Chinese Academy of Sciences, Beijing, China
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Danni Peng-Li,
| | - Patricia Alves Da Mota
- Food Quality Perception and Society Team, iSENSE Lab, Department of Food Science, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Camile Maria Costa Correa
- Food Quality Perception and Society Team, iSENSE Lab, Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Raymond C. K. Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Derek Victor Byrne
- Food Quality Perception and Society Team, iSENSE Lab, Department of Food Science, Aarhus University, Aarhus, Denmark
- Sino-Danish College (SDC), University of Chinese Academy of Sciences, Beijing, China
| | - Qian Janice Wang
- Food Quality Perception and Society Team, iSENSE Lab, Department of Food Science, Aarhus University, Aarhus, Denmark
- Sino-Danish College (SDC), University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|