1
|
Martins Antunes de Melo WDC, Celiešiūtė-Germanienė R, Šimonis P, Stirkė A. Antimicrobial photodynamic therapy (aPDT) for biofilm treatments. Possible synergy between aPDT and pulsed electric fields. Virulence 2021; 12:2247-2272. [PMID: 34496717 PMCID: PMC8437467 DOI: 10.1080/21505594.2021.1960105] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Currently, microbial biofilms have been the cause of a wide variety of infections in the human body, reaching 80% of all bacterial and fungal infections. The biofilms present specific properties that increase the resistance to antimicrobial treatments. Thus, the development of new approaches is urgent, and antimicrobial photodynamic therapy (aPDT) has been shown as a promising candidate. aPDT involves a synergic association of a photosensitizer (PS), molecular oxygen and visible light, producing highly reactive oxygen species (ROS) that cause the oxidation of several cellular components. This therapy attacks many components of the biofilm, including proteins, lipids, and nucleic acids present within the biofilm matrix; causing inhibition even in the cells that are inside the extracellular polymeric substance (EPS). Recent advances in designing new PSs to increase the production of ROS and the combination of aPDT with other therapies, especially pulsed electric fields (PEF), have contributed to enhanced biofilm inhibition. The PEF has proven to have antimicrobial effect once it is known that extensive chemical reactions occur when electric fields are applied. This type of treatment kills microorganisms not only due to membrane rupture but also due to the formation of reactive compounds including free oxygen, hydrogen, hydroxyl and hydroperoxyl radicals. So, this review aims to show the progress of aPDT and PEF against the biofilms, suggesting that the association of both methods can potentiate their effects and overcome biofilm infections.
Collapse
Affiliation(s)
- Wanessa de Cassia Martins Antunes de Melo
- Department of Functional Materials and Electronics, Laboratory of Bioelectric, State Research Institute, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Raimonda Celiešiūtė-Germanienė
- Department of Functional Materials and Electronics, Laboratory of Bioelectric, State Research Institute, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Povilas Šimonis
- Department of Functional Materials and Electronics, Laboratory of Bioelectric, State Research Institute, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Arūnas Stirkė
- Department of Functional Materials and Electronics, Laboratory of Bioelectric, State Research Institute, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| |
Collapse
|
2
|
Andriukonis E, Celiesiute-Germaniene R, Ramanavicius S, Viter R, Ramanavicius A. From Microorganism-Based Amperometric Biosensors towards Microbial Fuel Cells. SENSORS (BASEL, SWITZERLAND) 2021; 21:2442. [PMID: 33916302 PMCID: PMC8038125 DOI: 10.3390/s21072442] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
This review focuses on the overview of microbial amperometric biosensors and microbial biofuel cells (MFC) and shows how very similar principles are applied for the design of both types of these bioelectronics-based devices. Most microorganism-based amperometric biosensors show poor specificity, but this drawback can be exploited in the design of microbial biofuel cells because this enables them to consume wider range of chemical fuels. The efficiency of the charge transfer is among the most challenging and critical issues during the development of any kind of biofuel cell. In most cases, particular redox mediators and nanomaterials are applied for the facilitation of charge transfer from applied biomaterials towards biofuel cell electrodes. Some improvements in charge transfer efficiency can be achieved by the application of conducting polymers (CPs), which can be used for the immobilization of enzymes and in some particular cases even for the facilitation of charge transfer. In this review, charge transfer pathways and mechanisms, which are suitable for the design of biosensors and in biofuel cells, are discussed. Modification methods of the cell-wall/membrane by conducting polymers in order to enhance charge transfer efficiency of microorganisms, which can be potentially applied in the design of microbial biofuel cells, are outlined. The biocompatibility-related aspects of conducting polymers with microorganisms are summarized.
Collapse
Affiliation(s)
- Eivydas Andriukonis
- NanoTechnas-Center of Nanotechnology and Material Science, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania; (E.A.); (R.C.-G.); (S.R.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania
| | - Raimonda Celiesiute-Germaniene
- NanoTechnas-Center of Nanotechnology and Material Science, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania; (E.A.); (R.C.-G.); (S.R.)
- Laboratory of Bioelectrics, State Research Institute Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania
| | - Simonas Ramanavicius
- NanoTechnas-Center of Nanotechnology and Material Science, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania; (E.A.); (R.C.-G.); (S.R.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania
| | - Roman Viter
- NanoTechnas-Center of Nanotechnology and Material Science, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania; (E.A.); (R.C.-G.); (S.R.)
- Center for Collective Use of Scientific Equipment, Sumy State University, 40018 Sumy, Ukraine
- Institute of Atomic Physics and Spectroscopy, University of Latvia, LV-1004 Riga, Latvia
| | - Arunas Ramanavicius
- NanoTechnas-Center of Nanotechnology and Material Science, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania; (E.A.); (R.C.-G.); (S.R.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania
| |
Collapse
|
3
|
Simonis P, Linkeviciute A, Stirke A. Electroporation Assisted Improvement of Freezing Tolerance in Yeast Cells. Foods 2021; 10:foods10010170. [PMID: 33467689 PMCID: PMC7829889 DOI: 10.3390/foods10010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 11/23/2022] Open
Abstract
Prolonged storage of frozen dough worsens the structure of thawed dough. The main reason is the inhibition of yeast activity. In this study we investigated applicability of pulsed electric field treatment for introduction of cryoprotectant into yeast cells. We showed that pre-treatment of cells suspended in a trehalose solution improves freezing tolerance and results in higher viability after thawing. Viability increased with rise in electric field strength (from 3 to 4.5 kV/cm) and incubation time (from 0 to 60 min) after exposure. Pretreatment resulted in lower decrease in the viability of thawed cells, viability of untreated cells dropped to 10%, while pre-treatment with PEF and trehalose tripled the viability.
Collapse
|