1
|
Anita L, Choi MJ, Yin GN, Ock J, Kwon MH, Rho BY, Chung DY, Suh JK, Ryu JK. Photobiomodulation as a Potential Therapy for Erectile Function: A Preclinical Study in a Cavernous Nerve Injury Model. World J Mens Health 2024; 42:842-854. [PMID: 38772533 PMCID: PMC11439795 DOI: 10.5534/wjmh.230187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 05/23/2024] Open
Abstract
PURPOSE To identify the optimal photobiomodulation (PBM) parameters using molecular, histological, and erectile function analysis in cavernous nerve injury. MATERIALS AND METHODS A cavernous nerve injury was induced in 8-week-old C57BL/6J male mice that were subsequently divided randomly into age-matched control groups. Erectile function tests, penile histology, and Western blotting were performed 2 weeks after surgery and PBM treatment. RESULTS The PBM treatment was administered for five consecutive days with a light-emitted diode (LED) device that delivers 660 nm±3% RED light, and near infra-red 830 nm±2% promptly administered following nerve-crushing surgery and achieved a notable restoration of erectile function approximately 90% of the control values. Subsequent in-vitro and ex-vivo analyses revealed the regeneration of neurovascular connections in both the dorsal root ganglion and major pelvic ganglion, characterized by the sprouting of neurites. Furthermore, the expression levels of neurotrophic, survival, and angiogenic factors exhibited a substantial increase across all groups subjected to PBM treatment. CONCLUSIONS The utilization of PBM employing LED with 660 nm, 830 nm, and combination of both these wavelengths, exhibited significant efficacy to restore erectile function in a murine model of cavernous nerve injury. Thus, the PBM emerges as a potent therapeutic modality with notable advantages such as efficacy, noninvasiveness, and non-pharmacological interventions for erectile dysfunction caused by nerve injury.
Collapse
Affiliation(s)
- Limanjaya Anita
- Department of Urology and National Research Center for Sexual Medicine, Inha University College of Medicine, Incheon, Korea
| | - Min-Ji Choi
- Department of Urology and National Research Center for Sexual Medicine, Inha University College of Medicine, Incheon, Korea
| | - Guo Nan Yin
- Department of Urology and National Research Center for Sexual Medicine, Inha University College of Medicine, Incheon, Korea
| | - JiYeon Ock
- Department of Urology and National Research Center for Sexual Medicine, Inha University College of Medicine, Incheon, Korea
| | - Mi-Hye Kwon
- Department of Urology and National Research Center for Sexual Medicine, Inha University College of Medicine, Incheon, Korea
| | - Beom Yong Rho
- Department of Urology and National Research Center for Sexual Medicine, Inha University College of Medicine, Incheon, Korea
| | - Doo Yong Chung
- Department of Urology and National Research Center for Sexual Medicine, Inha University College of Medicine, Incheon, Korea
| | - Jun-Kyu Suh
- Department of Urology and National Research Center for Sexual Medicine, Inha University College of Medicine, Incheon, Korea.
| | - Ji-Kan Ryu
- Department of Urology and National Research Center for Sexual Medicine, Inha University College of Medicine, Incheon, Korea.
| |
Collapse
|
2
|
Diniz LA, Ferreira LDAQ, Ribeiro RDB, de Jesus SLG, Anestino TA, Caldeira ASP, Souto GR, de Avelar GF, Amaral FA, Ferreira MVL, Madeira MFM, Braga FC, Diniz IMA. Exploring the association between a standardized extract of pequi peels (Caryocar brasiliense Cambess) and blue light as a photodynamic therapy for treating superficial wounds. Photochem Photobiol 2024; 100:712-724. [PMID: 37909171 DOI: 10.1111/php.13874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023]
Abstract
Natural products derived from plants can be used as photosensitizers for antimicrobial photodynamic therapy (aPDT) combining key therapeutic strategies for tissue repair while controlling microorganisms' growth. We investigated a standardized extract of pequi peels (Caryocar brasiliense Cambess) as a brownish natural photosensitizer for aPDT using blue light. Three concentrations of the pequi extract (PE; 10, 30, or 90 μg/mL) were tested solely or associated with blue laser (445 nm, 100 mW, 138 J/cm2, 6 J, 60 s). In vitro, we quantified reactive oxygen species (ROS), assessed skin keratinocytes (HaCat) viability and migration, and aPDT antimicrobial activity on Streptococcus or Staphylococcus strains. In vivo, we assessed wound closure for the most active concentration disclosed by the in vitro assay (30 μg/mL). Upon aPDT treatments, ROS were significantly increased in cell monolayers regardless of PE concentration. PE at low doses stimulates epithelial cells. Although PE stimulated cellular migration, aPDT was moderately cytotoxic to skin keratinocytes, particularly at the highest concentration. The antimicrobial activity was observed for PE at the lowest concentration (10 μg/mL) and mostly at PE 10 μg/mL and 30 μg/mL when used as aPDT photosensitizers. aPDT with PE 30 μg/mL presents antimicrobial activity without compromising the initial phases of skin repair.
Collapse
Affiliation(s)
- Luiza Alves Diniz
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- LASER Biotechnologies, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiza de Almeida Queiroz Ferreira
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- LASER Biotechnologies, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rafaela de Brito Ribeiro
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sarah Luiza Galvão de Jesus
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thales Augusto Anestino
- Department of Microbiology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alisson Samuel Portes Caldeira
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Vice Directorate of Research, René Rachou Institute-Fiocruz Minas, Belo Horizonte, Brazil
| | - Giovanna Ribeiro Souto
- LASER Biotechnologies, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Dentistry, Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, Brazil
| | - Gleide Fernandes de Avelar
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávio Almeida Amaral
- Department of Biochemistry and Immunology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Fernão Castro Braga
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ivana Márcia Alves Diniz
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- LASER Biotechnologies, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
3
|
Zhang C, Shi J, Dai Y, Li X, Leng J. Progress of the study of pericytes and their potential research value in adenomyosis. Sci Prog 2024; 107:368504241257126. [PMID: 38863331 PMCID: PMC11179483 DOI: 10.1177/00368504241257126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Pericytes (PCs) are versatile cells integral to the microcirculation wall, exhibiting specific stem cell traits. They are essential in modulating blood flow, ensuring vascular permeability, maintaining homeostasis, and aiding tissue repair process. Given their involvement in numerous disease-related pathological and physiological processes, the regulation of PCs has emerged as a focal point of research. Adenomyosis is characterized by the presence of active endometrial glands and stroma encased by an enlarged and proliferative myometrial layer, further accompanied by fibrosis and new blood vessel formation. This distinct pathological condition might be intricately linked with PCs. This article comprehensively reviews the markers associated with PCs, their contributions to angiogenesis, blood flow modulation, and fibrotic processes. Moreover, it provides a comprehensive overview of the current research on adenomyosis pathophysiology, emphasizing the potential correlation and future implications regarding PCs and the development of adenomyosis.
Collapse
Affiliation(s)
- Chenyu Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Jinghua Shi
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Yi Dai
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Xiaoyan Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Jinhua Leng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| |
Collapse
|
4
|
Polat S, Yazir Y, Duruksu G, Kiliç KC, Mert S, Gacar G, Öncel Duman B, Halbutoğullari ZS. Investigation of the differentiation potential of pericyte cells as an alternative source of mesenchymal stem cells. Acta Histochem 2024; 126:152145. [PMID: 38432161 DOI: 10.1016/j.acthis.2024.152145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND The mesenchymal stem cells (MSCs) with characterized by their multipotency and capacity to differentiate into various tissue cell types, have led to their incorporation in regenerative medicine research. However, the limited numbers of MSCs in the human body and their diverse differentiation capabilities in tissues highlight the need for exploring alternative regenerative cell sources. In this study, therefore, we conducted molecular level examinations to determine whether pericytes, specialized cell communities situated near blood vessels, could serve as a substitute for human bone marrow-derived mesenchymal stem cells (hBM-MSCs). In this context, the potential application of pericytes surrounds the vessels when MSCs are insufficient for functional purposes. METHODS The pericytes utilized in this investigation were derived from the placenta and characterized at the third passage. Similarly, the hBM-MSCs were also characterized at the third passage. The pluripotent properties of the two cell types were assessed at the gene expression level. Thereafter, both pericytes and hBM-MSCs were directed towards adipogenic, osteogenic and chondrogenic differentiation. The cells in both groups were examined on days 7, 14, and, 21 and their differentiation status was compared both immunohistochemically and through gene expression analysis. RESULTS Upon comparing the pluripotency characteristics of placental pericytes and hBM-MSCs, it was discovered that there was a substantial upregulation of the pluripotency genes FoxD3, Sox2, ZPF42, UTF1, and, Lin28 in both cell types. However, no significant expression of the genes Msx1, Nr6a1, Pdx1, and, GATA6 was observed in either cell type. It was also noted that pericytes differentiate into adipogenic, osteogenic and, chondrogenic lineages similar to hBM-MSCs. DISCUSSION As a result, it has been determined that pericytes exhibit high differentiation and proliferation properties similar to those of MSCs, and therefore can be considered a suitable alternative cell source for regenerative medicine and tissue engineering research, in cases where MSCs are not available or insufficient. It is notable that pericytes have been suggested as a potential substitute in studies where MSCs are lacking.
Collapse
Affiliation(s)
- Selen Polat
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey
| | - Yusufhan Yazir
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey; Department of Histology and Embryology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey.
| | - Gökhan Duruksu
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey
| | - Kamil Can Kiliç
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey
| | - Serap Mert
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey; Department of Chemistry and Chemical Processing Technologies, Kocaeli University, Kocaeli, Turkey; Department of Polymer Science and Technology, Kocaeli University, Kocaeli, Turkey
| | - Gülçin Gacar
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey
| | - Büşra Öncel Duman
- Medical Laboratory Techniques Program, European Vocational School, Kocaeli Health and Technology University, Kocaeli, Turkey
| | - Zehra Seda Halbutoğullari
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey; Department of Medical Biology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
5
|
Alam M, Karami S, Mohammadikhah M, Badkoobeh A, Golkar M, Abbasi K, Soufdoost RS, Hakim LK, Talebi S, Namanloo RA, Hussain A, Heboyan A, Tebyaniyan H. The effect of photobiomodulation therapy in common maxillofacial injuries: Current status. Cell Biochem Funct 2024; 42:e3951. [PMID: 38349051 DOI: 10.1002/cbf.3951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/28/2024] [Indexed: 02/15/2024]
Abstract
The use of photobiomodulation therapy (PBMT) may be used for treating trauma to the maxillofacial region. The effects of PBMT on maxillofacial injuries were discussed in this review article. The electronic databases Pubmed, Scopus, and Web of Science were thoroughly searched. This review included in vitro, in vivo, and clinical studies describing how PBMT can be used in maxillofacial tissue engineering and regenerative medicine. Some studies suggest that PBMT may offer a promising therapy for traumatic maxillofacial injuries because it can stimulate the differentiation and proliferation of various cells, including dental pulp cells and mesenchymal stem cells, enhancing bone regeneration and osseointegration. PBMT reduces pain and swelling after oral surgery and tooth extraction in human and animal models of maxillofacial injuries. Patients with temporomandibular disorders also benefit from PBMT in terms of reduced inflammation and symptoms. PBMT still has some limitations, such as the need for standardizing parameters. PBMT must also be evaluated further in randomized controlled trials in various maxillofacial injuries. As a result, PBMT offers a safe and noninvasive treatment option for patients suffering from traumatic maxillofacial injuries. PBMT still requires further research to establish its efficacy in clinical practice and determine the optimal parameters.
Collapse
Affiliation(s)
- Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Meysam Mohammadikhah
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Golkar
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Sahar Talebi
- Research Committee, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Ahmed Hussain
- School of Dentistry, Edmonton Clinic Health Academy, University of Alberta, Edmonton, Canada
| | - Artak Heboyan
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| |
Collapse
|
6
|
Murugan NJ, Cariba S, Abeygunawardena S, Rouleau N, Payne SL. Biophysical control of plasticity and patterning in regeneration and cancer. Cell Mol Life Sci 2023; 81:9. [PMID: 38099951 PMCID: PMC10724343 DOI: 10.1007/s00018-023-05054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
Cells and tissues display a remarkable range of plasticity and tissue-patterning activities that are emergent of complex signaling dynamics within their microenvironments. These properties, which when operating normally guide embryogenesis and regeneration, become highly disordered in diseases such as cancer. While morphogens and other molecular factors help determine the shapes of tissues and their patterned cellular organization, the parallel contributions of biophysical control mechanisms must be considered to accurately predict and model important processes such as growth, maturation, injury, repair, and senescence. We now know that mechanical, optical, electric, and electromagnetic signals are integral to cellular plasticity and tissue patterning. Because biophysical modalities underly interactions between cells and their extracellular matrices, including cell cycle, metabolism, migration, and differentiation, their applications as tuning dials for regenerative and anti-cancer therapies are being rapidly exploited. Despite this, the importance of cellular communication through biophysical signaling remains disproportionately underrepresented in the literature. Here, we provide a review of biophysical signaling modalities and known mechanisms that initiate, modulate, or inhibit plasticity and tissue patterning in models of regeneration and cancer. We also discuss current approaches in biomedical engineering that harness biophysical control mechanisms to model, characterize, diagnose, and treat disease states.
Collapse
Affiliation(s)
- Nirosha J Murugan
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada.
- Allen Discovery Center, Tufts University, Medford, MA, USA.
| | - Solsa Cariba
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Nicolas Rouleau
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
- Allen Discovery Center, Tufts University, Medford, MA, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Samantha L Payne
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
7
|
Machado CA, Oliveira BDS, Dias TL, Barros JLVMD, Ferreira GMF, Cordeiro TM, Feracin V, Alexandre CH, Abreu LKS, Silva WND, Carvalho BC, Fernandes HDB, Vieira ÉLM, Castro PR, Ferreira RN, Kangussu LM, Franco GR, Guatimosim C, Barcelos LDS, Simões E Silva AC, Toscano ECDB, Rachid MA, Teixeira AL, Miranda ASD. Weight-drop model as a valuable tool to study potential neurobiological processes underlying behavioral and cognitive changes secondary to mild traumatic brain injury. J Neuroimmunol 2023; 385:578242. [PMID: 37951202 DOI: 10.1016/j.jneuroim.2023.578242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023]
Abstract
The pathophysiology of post-traumatic brain injury (TBI) behavioral and cognitive changes is not fully understood, especially in its mild presentation. We designed a weight drop TBI model in mice to investigate the role of neuroinflammation in behavioral and cognitive sequelae following mild TBI. C57BL/6 mice displayed depressive-like behavior at 72 h after mild TBI compared with controls, as indicated by a decrease in the latency to first immobility and climbing time in the forced swim test. Additionally, anxiety-like behavior and hippocampal-associated spatial learning and memory impairment were found in the elevated plus maze and in the Barnes maze, respectively. Levels of a set of inflammatory mediators and neurotrophic factors were analyzed at 6 h, 24 h, 72 h, and 30 days after injury in ipsilateral and contralateral hemispheres of the prefrontal cortex and hippocampus. Principal components analysis revealed two principal components (PC), which represented 59.1% of data variability. PC1 (cytokines and chemokines) expression varied between both hemispheres, while PC2 (neurotrophic factors) expression varied only across the investigated brain areas. Our model reproduces mild TBI-associated clinical signs and pathological features and might be a valuable tool to broaden the knowledge regarding mild TBI pathophysiology as well as to test potential therapeutic targets.
Collapse
Affiliation(s)
- Caroline Amaral Machado
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bruna da Silva Oliveira
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thomaz Lüscher Dias
- Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Thiago Macedo Cordeiro
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Victor Feracin
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cristian Henrique Alexandre
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Larissa Katharina Sabino Abreu
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Walison Nunes da Silva
- Department of Physiology and Biophysics, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Brener Cunha Carvalho
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Heliana de Barros Fernandes
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Érica Leandro Marciano Vieira
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pollyana Ribeiro Castro
- Department of Physiology and Biophysics, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo Novaes Ferreira
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas Miranda Kangussu
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gloria Regina Franco
- Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cristina Guatimosim
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucíola da Silva Barcelos
- Department of Physiology and Biophysics, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Milene Alvarenga Rachid
- Department of Pathology, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio Lúcio Teixeira
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX.
| | - Aline Silva de Miranda
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
8
|
Kim HW, Yong H, Shea GKH. Blood-spinal cord barrier disruption in degenerative cervical myelopathy. Fluids Barriers CNS 2023; 20:68. [PMID: 37743487 PMCID: PMC10519090 DOI: 10.1186/s12987-023-00463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/12/2023] [Indexed: 09/26/2023] Open
Abstract
Degenerative cervical myelopathy (DCM) is the most prevalent cause of spinal cord dysfunction in the aging population. Significant neurological deficits may result from a delayed diagnosis as well as inadequate neurological recovery following surgical decompression. Here, we review the pathophysiology of DCM with an emphasis on how blood-spinal cord barrier (BSCB) disruption is a critical yet neglected pathological feature affecting prognosis. In patients suffering from DCM, compromise of the BSCB is evidenced by elevated cerebrospinal fluid (CSF) to serum protein ratios and abnormal contrast-enhancement upon magnetic resonance imaging (MRI). In animal model correlates, there is histological evidence of increased extravasation of tissue dyes and serum contents, and pathological changes to the neurovascular unit. BSCB dysfunction is the likely culprit for ischemia-reperfusion injury following surgical decompression, which can result in devastating neurological sequelae. As there are currently no therapeutic approaches specifically targeting BSCB reconstitution, we conclude the review by discussing potential interventions harnessed for this purpose.
Collapse
Affiliation(s)
- Hyun Woo Kim
- Department of Orthopaedics and Traumatology, LKS Faulty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hu Yong
- Department of Orthopaedics and Traumatology, LKS Faulty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Graham Ka Hon Shea
- Department of Orthopaedics and Traumatology, LKS Faulty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
9
|
do Valle IB, Oliveira SR, da Silva JM, Peterle GT, Có ACG, Sousa-Neto SS, Mendonça EF, de Arruda JAA, Gomes NA, da Silva G, Leopoldino AM, Macari S, Birbrair A, von Zeidler SV, Diniz IMA, Silva TA. The participation of tumor residing pericytes in oral squamous cell carcinoma. Sci Rep 2023; 13:5460. [PMID: 37015965 PMCID: PMC10073133 DOI: 10.1038/s41598-023-32528-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/29/2023] [Indexed: 04/06/2023] Open
Abstract
Pericytes are perivascular cells related to vessel structure and angiogenesis that can interact with neoplastic cells, interfering with cancer progression and outcomes. This study focused on the characterization of pericytes in oral squamous cell carcinoma (OSCC) using clinical samples and a transgenic mouse model of oral carcinogenesis. Nestin-/NG2+ (type-1) and nestin+/NG2+ (type-2) pericytes were analyzed by direct fluorescence after induction of oral carcinogenesis (4-nitroquinoline-1-oxide). Gene expression of neuron glial antigen-2 (NG2), platelet-derived growth factor receptor beta (PDGFR-β), and cluster of differentiation 31 (CD31) was examined in human OSCC tissues. The protein expression of von Willebrand factor and NG2 was assessed in oral leukoplakia (i.e., oral potentially malignant disorders) and OSCC samples. Additionally, clinicopathological aspects and survival data were correlated and validated by bioinformatics using The Cancer Genome Atlas (TCGA). Induction of carcinogenesis in mice produced an increase in both NG2+ pericyte subsets. In human OSCC, advanced-stage tumors showed a significant reduction in CD31 mRNA and von Willebrand factor-positive vessels. Low PDGFR-β expression was related to a shorter disease-free survival time, while NG2 mRNA overexpression was associated with a reduction in overall survival, consistent with the TCGA data. Herein, oral carcinogenesis resulted in an increase in NG2+ pericytes, which negatively affected survival outcomes.
Collapse
Affiliation(s)
- Isabella Bittencourt do Valle
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, room 3105, Belo Horizonte, Minas Gerais, CEP: 31.270-901, Brazil
| | - Sicília Rezende Oliveira
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, room 3105, Belo Horizonte, Minas Gerais, CEP: 31.270-901, Brazil
| | - Janine Mayra da Silva
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, room 3105, Belo Horizonte, Minas Gerais, CEP: 31.270-901, Brazil
| | - Gabriela Tonini Peterle
- Biotechnology Post-graduation Program, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Anna Clara Gregório Có
- Biotechnology Post-graduation Program, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Sebastião Silvério Sousa-Neto
- Department of Stomatology (Oral Pathology), School of Dentistry, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Elismauro Francisco Mendonça
- Department of Stomatology (Oral Pathology), School of Dentistry, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - José Alcides Almeida de Arruda
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, room 3105, Belo Horizonte, Minas Gerais, CEP: 31.270-901, Brazil
| | - Natália Aparecida Gomes
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel da Silva
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Andréia Machado Leopoldino
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Soraia Macari
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alexander Birbrair
- Department of Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sandra Ventorin von Zeidler
- Biotechnology Post-graduation Program, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Ivana Márcia Alves Diniz
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tarcília Aparecida Silva
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, room 3105, Belo Horizonte, Minas Gerais, CEP: 31.270-901, Brazil.
| |
Collapse
|
10
|
Rocha BGS, Picoli CC, Gonçalves BOP, Silva WN, Costa AC, Moraes MM, Costa PAC, Santos GSP, Almeida MR, Silva LM, Singh Y, Falchetti M, Guardia GDA, Guimarães PPG, Russo RC, Resende RR, Pinto MCX, Amorim JH, Azevedo VAC, Kanashiro A, Nakaya HI, Rocha EL, Galante PAF, Mintz A, Frenette PS, Birbrair A. Tissue-resident glial cells associate with tumoral vasculature and promote cancer progression. Angiogenesis 2023; 26:129-166. [PMID: 36183032 DOI: 10.1007/s10456-022-09858-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/08/2022] [Indexed: 11/01/2022]
Abstract
Cancer cells are embedded within the tissue and interact dynamically with its components during cancer progression. Understanding the contribution of cellular components within the tumor microenvironment is crucial for the success of therapeutic applications. Here, we reveal the presence of perivascular GFAP+/Plp1+ cells within the tumor microenvironment. Using in vivo inducible Cre/loxP mediated systems, we demonstrated that these cells derive from tissue-resident Schwann cells. Genetic ablation of endogenous Schwann cells slowed down tumor growth and angiogenesis. Schwann cell-specific depletion also induced a boost in the immune surveillance by increasing tumor-infiltrating anti-tumor lymphocytes, while reducing immune-suppressor cells. In humans, a retrospective in silico analysis of tumor biopsies revealed that increased expression of Schwann cell-related genes within melanoma was associated with improved survival. Collectively, our study suggests that Schwann cells regulate tumor progression, indicating that manipulation of Schwann cells may provide a valuable tool to improve cancer patients' outcomes.
Collapse
Affiliation(s)
- Beatriz G S Rocha
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bryan O P Gonçalves
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Michele M Moraes
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro A C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Milla R Almeida
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luciana M Silva
- Department of Cell Biology, Ezequiel Dias Foundation, Belo Horizonte, MG, Brazil
| | - Youvika Singh
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Marcelo Falchetti
- Department of Microbiology and Immunology, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Pedro P G Guimarães
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Remo C Russo
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro C X Pinto
- Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Jaime H Amorim
- Center of Biological Sciences and Health, Federal University of Western Bahia, Barreiras, BA, Brazil
| | - Vasco A C Azevedo
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexandre Kanashiro
- Department of Dermatology, University of Wisconsin-Madison, Medical Sciences Center, Rm 4385, 1300 University Avenue, Madison, WI, 53706, USA
| | | | - Edroaldo L Rocha
- Department of Microbiology and Immunology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sirio-Libanes, Sao Paulo, SP, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
- Department of Dermatology, University of Wisconsin-Madison, Medical Sciences Center, Rm 4385, 1300 University Avenue, Madison, WI, 53706, USA.
- Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
11
|
Silveira BM, Ribeiro TO, Freitas RS, Carreira ACO, Gonçalves MS, Sogayar M, Meyer R, Birbrair A, Fortuna V. Secretome from human adipose-derived mesenchymal stem cells promotes blood vessel formation and pericyte coverage in experimental skin repair. PLoS One 2022; 17:e0277863. [PMID: 36534643 PMCID: PMC9762598 DOI: 10.1371/journal.pone.0277863] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/04/2022] [Indexed: 12/24/2022] Open
Abstract
Human adipose tissue-derived stem cells (hASC) secretome display various therapeutically relevant effects in regenerative medicine, such as induction of angiogenesis and tissue repair. The benefits of hASC secretome are primarily orchestrated by trophic factors that mediate autocrine and paracrine effects in host cells. However, the composition and the innate characteristics of hASC secretome can be highly variable depending on the culture conditions. Here, we evaluated the combined effect of serum-free media and hypoxia preconditioning on the hASCs secretome composition and biological effects on angiogenesis and wound healing. The hASCs were cultured in serum-free media under normoxic (NCM) or hypoxic (HCM) preconditioning. The proteomic profile showed that pro- and anti-antiangiogenic factors were detected in NCM and HCM secretomes. In vitro studies demonstrated that hASCs secretomes enhanced endothelial proliferation, survival, migration, in vitro tube formation, and in vivo Matrigel plug angiogenesis. In a full-thickness skin-wound mouse model, injection of either NCM or HCM significantly accelerated the wound healing. Finally, hASC secretomes were potent in increasing endothelial density and vascular coverage of resident pericytes expressing NG2 and nestin to the lesion site, potentially contributing to blood vessel maturation. Overall, our data suggest that serum-free media or hypoxic preconditioning enhances the vascular regenerative effects of hASC secretome in a preclinical wound healing model.
Collapse
Affiliation(s)
- Brysa M. Silveira
- Health Science Institute, Federal University of Bahia, Salvador, BA, Brazil
| | - Tiago O. Ribeiro
- Health Science Institute, Federal University of Bahia, Salvador, BA, Brazil
| | - Railane S. Freitas
- Health Science Institute, Federal University of Bahia, Salvador, BA, Brazil
| | - Ana C. O. Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Marilda Souza Gonçalves
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, BA, Brazil
- Department of Clinical Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil
| | - Mari Sogayar
- Cell and Molecular Therapy Center (NUCEL), Medical School, University of São Paulo, São Paulo, Brazil
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Roberto Meyer
- Health Science Institute, Federal University of Bahia, Salvador, BA, Brazil
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Radiology, Columbia University Medical Center, New York, NY, United States of America
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vitor Fortuna
- Health Science Institute, Federal University of Bahia, Salvador, BA, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, BA, Brazil
- * E-mail:
| |
Collapse
|
12
|
Gilson Sena IF, Fernandes LL, Lorandi LL, Santana TV, Cintra L, Lima IF, Iwai LK, Kramer JM, Birbrair A, Heller D. Identification of early biomarkers in saliva in genetically engineered mouse model C(3)1-TAg of breast cancer. Sci Rep 2022; 12:11544. [PMID: 35798767 PMCID: PMC9263110 DOI: 10.1038/s41598-022-14514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/08/2022] [Indexed: 11/09/2022] Open
Abstract
Breast cancer is one of leading causes of death worldwide in the female population. Deaths from breast cancer could be reduced significantly through earlier and more efficient detection of the disease. Saliva, an oral fluid that contains an abundance of protein biomarkers, has been recognized as a promising diagnostic biofluid that is easy to isolate through non-invasive techniques. Assays on saliva can be performed rapidly and are cost-effective. Therefore, our work aimed to identify salivary biomarkers present in the initial stages of breast cancer, where cell alterations are not yet detectable by histopathological analysis. Using state-of-the-art techniques, we employed a transgenic mouse model of mammary cancer to identify molecular changes in precancerous stage breast cancer through protein analysis in saliva. Through corroborative molecular approaches, we established that proteins related to metabolic changes, inflammatory process and cell matrix degradation are detected in saliva at the onset of tumor development. Our work demonstrated that salivary protein profiles can be used to identify cellular changes associated with precancerous stage breast cancer through non-invasive means even prior to biopsy-evident disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Ismael Feitosa Lima
- Laboratory of Applied Toxicology, Center of Toxins, Immune-Response and Cell Signaling (LETA/CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Leo Kei Iwai
- Laboratory of Applied Toxicology, Center of Toxins, Immune-Response and Cell Signaling (LETA/CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Jill M Kramer
- Department of Oral Biology, School of Dental Medicine, The University of Buffalo, State University of New York, Buffalo, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. .,Department of Dermatology, Medical Sciences Center, University of Wisconsin-Madison, Rm 4385, 1300 University Avenue, Madison, WI, 53706, USA. .,Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| | - Débora Heller
- Post Graduate Program in Dentistry, Cruzeiro do Sul University, São Paulo, Brazil. .,Hospital Israelita Albert Einstein, São Paulo, Brazil. .,Department of Periodontology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
| |
Collapse
|
13
|
Gómez García FJ, Del Vecchio A, Romeo U, Martínez Díaz F, García Carrillo N, Camacho Alonso F. Study of the Effect of Photobiomodulation on a Skin Repair Model in SKH-1 Mice. Photobiomodul Photomed Laser Surg 2022; 40:325-333. [DOI: 10.1089/photob.2021.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Francisco José Gómez García
- Group Odontología: Medicina Oral, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
- Department of Dermatology, Stomatology, Radiology and Physic Medicine, Faculty of Medicine, Campus of Excellence Mare Nostrum, University of Murcia, Murcia, Spain
| | - Alessandro Del Vecchio
- Department of Oral and Maxillofacial Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Umberto Romeo
- Department of Oral and Maxillofacial Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Francisco Martínez Díaz
- Group Odontología: Medicina Oral, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
- Department of Pathology, Hospital General Universitario Reina Sofía, Murcia, Spain
| | - Nuria García Carrillo
- Group Odontología: Medicina Oral, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Fabio Camacho Alonso
- Department of Dermatology, Stomatology, Radiology and Physic Medicine, Faculty of Medicine, Campus of Excellence Mare Nostrum, University of Murcia, Murcia, Spain
| |
Collapse
|
14
|
Peng J, Chen H, Zhang B. Nerve–stem cell crosstalk in skin regeneration and diseases. Trends Mol Med 2022; 28:583-595. [DOI: 10.1016/j.molmed.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
|
15
|
Oliveira RF, Marquiore LF, Gomes CBS, de Abreu PTR, Ferreira LAQ, Diniz LA, Gomes NA, Jácome‐Santos H, Moreno A, Macari S, Mesquita RA, Silva TA, Marques MM, Diniz IMA. Interplay between epithelial and mesenchymal cells unveils essential proinflammatory and pro‐resolutive mediators modulated by photobiomodulation therapy at 660 nm. Wound Repair Regen 2022; 30:345-356. [DOI: 10.1111/wrr.13010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 03/04/2022] [Accepted: 03/27/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Rafaela F. Oliveira
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Larissa F. Marquiore
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Cristopher B. S. Gomes
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Priscila T. R. de Abreu
- Department of Oral Pathology and Surgery School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Luiza A. Q. Ferreira
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Luiza A. Diniz
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Natália A. Gomes
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Humberto Jácome‐Santos
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
- Department of Oral Pathology and Surgery School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Amália Moreno
- Department of Oral Pathology and Surgery School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Soraia Macari
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Ricardo A. Mesquita
- Department of Oral Pathology and Surgery School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Tarcília A. Silva
- Department of Oral Pathology and Surgery School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Márcia M. Marques
- Post‐Graduation Program in Dentistry, Ibirapuera University São Paulo São Paulo Brazil
| | - Ivana M. A. Diniz
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| |
Collapse
|
16
|
Lee G, Jeon C, Mok JW, Shin S, Kim S, Han HH, Kim S, Hong SH, Kim H, Joo C, Sim J, Hahn SK. Smart Wireless Near-Infrared Light Emitting Contact Lens for the Treatment of Diabetic Retinopathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103254. [PMID: 35092362 PMCID: PMC8948592 DOI: 10.1002/advs.202103254] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/30/2021] [Indexed: 05/04/2023]
Abstract
Diabetic retinopathy is currently treated by highly invasive repeated therapeutic injections and surgical interventions without complete vision recovery. Here, a noninvasive smart wireless far red/near-infrared (NIR) light emitting contact lens developed successfully for the repeated treatment of diabetic retinopathy with significantly improved compliance. A far red/NIR light emitting diode (LED) is connected with an application-specific integrated circuit chip, wireless power, and communication systems on a PET film, which is embedded in a silicone elastomer contact lens by thermal crosslinking. After in vitro characterization, it is confirmed that the retinal vascular hyper-permeability induced by diabetic retinopathy in rabbits is reduced to a statistically significant level by simply repeated wearing of smart far red/NIR LED contact lens for 8 weeks with 120 µW light irradiation for 15 min thrice a week. Histological analysis exhibits the safety and feasibility of LED contact lenses for treating diabetic retinopathy. This platform technology for smart LED contact lens would be harnessed for various biomedical photonic applications.
Collapse
Affiliation(s)
- Geon‐Hui Lee
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673South Korea
| | - Cheonhoo Jeon
- Department of Electrical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673South Korea
| | - Jee Won Mok
- Department of Ophthalmology and Visual ScienceSeoul St. Mary's HospitalCollege of MedicineThe Catholic University of Korea505, Banpo‐dongSeocho‐guSeoul06591South Korea
| | - Sangbaie Shin
- PHI BIOMED Co.168, Yeoksam‐roGangnam‐guSeoul06248South Korea
| | - Su‐Kyoung Kim
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673South Korea
| | - Hye Hyeon Han
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673South Korea
| | - Seong‐Jong Kim
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673South Korea
| | - Sang Hoon Hong
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673South Korea
| | - Hwanhee Kim
- PHI BIOMED Co.168, Yeoksam‐roGangnam‐guSeoul06248South Korea
| | - Choun‐Ki Joo
- Department of Ophthalmology and Visual ScienceSeoul St. Mary's HospitalCollege of MedicineThe Catholic University of Korea505, Banpo‐dongSeocho‐guSeoul06591South Korea
| | - Jae‐Yoon Sim
- Department of Electrical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673South Korea
| | - Sei Kwang Hahn
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673South Korea
| |
Collapse
|
17
|
Gomes NA, do Valle IB, Gleber-Netto FO, Silva TA, Oliveira HMDC, de Oliveira RF, Ferreira LDAQ, Castilho LS, Reis PHRG, Prazeres PHDM, Menezes GB, de Magalhães CS, Mesquita RA, Marques MM, Birbrair A, Diniz IMA. Nestin and NG2 transgenes reveal two populations of perivascular cells stimulated by photobiomodulation. J Cell Physiol 2022; 237:2198-2210. [PMID: 35040139 DOI: 10.1002/jcp.30680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/14/2021] [Accepted: 01/04/2022] [Indexed: 12/20/2022]
Abstract
Pericytes and glial cells are known to collaborate in dental pulp tissue repair. Cell-based therapies that stimulate these stromal components may be of therapeutic relevance for partially vital dental pulp conditions. This study aimed to examine the early effect of photobiomodulation (PBM) in pericytes from experimentally injured pulp tissue. To accomplish this, we used the Nestin-GFP/NG2-DsRed mice, which could allow the identification of distinct pericyte phenotypes. We discovered the presence of two pericytes subsets within the dental pulp, the Nestin + NG2+ (type-2) and Nestin- NG2+ (type-1). Upon injury, PBM treatment led to a significant increase in Nestin+ cells and pericytes. This boost was mainly conferred by the more committed pericyte subset (NestinNG2+ ). PBM also stimulated terminal blood vessels sprouting adjacent to the injury site while maintaining signs of pulp vitality. In vitro, PBM induced VEGF upregulation, improved dental pulp cells proliferation and migration, and favored their mineralization potential. Herein, different subsets of perivascular cells were unveiled in the pulp tissue. PBM enhanced not only NG2+ cells but nestin-expressing progenitors in the injured dental pulp.
Collapse
Affiliation(s)
- Natália A Gomes
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabella B do Valle
- Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Frederico O Gleber-Netto
- Department of Head & Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tarcília A Silva
- Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Rafaela F de Oliveira
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiza de Almeida Q Ferreira
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lia S Castilho
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paulo H R G Reis
- Ohlab, Associação Mineira de Reabilitação, Belo Horizonte, Brazil
| | - Pedro H D M Prazeres
- Departament of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gustavo B Menezes
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cláudia S de Magalhães
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo A Mesquita
- Department of Head & Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Márcia M Marques
- Postgraduation Program in Dentistry, Ibirapuera University, São Paulo, Brazil
| | - Alexander Birbrair
- Departament of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ivana M A Diniz
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
18
|
de Faria CMG, Barrera-Patiño CP, Santana JPP, da Silva de Avó LR, Bagnato VS. Tumor radiosensitization by photobiomodulation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 225:112349. [PMID: 34742031 DOI: 10.1016/j.jphotobiol.2021.112349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/18/2021] [Accepted: 10/29/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE To investigate the safety of photobiomodulation therapy (PBM) in tumors and its potential as a radiosensitizer when combined with radiotherapy. METHODS We have performed in vitro experiments in A431 cells to assess proliferation and cell cycle after PBM, as well as clonogenic assay and H2AX-gamma immunolabeling to quantify double strand breaks after the combination of PBM and radiation. In vivo experiments in xenografts included Kaplan-Meier survival analysis, optical coherence tomography (OCT) and histological analysis. RESULTS PBM did not induce proliferation in vitro, but increased the G2/M fraction by 27% 24h after illumination, resulting in an enhancement of 30% in radiation effect in the clonogenic assay. The median survival of the PBM-RT group increased by 4 days and the hazard ratio was 0.417 (CI 95%: 0.173-1.006) when compared to radiation alone. OCT analysis over time demonstrated that PBM increases tumor necrosis due to radiation, and histological analysis showed that illumination increased cell differentiation and angiogenesis, which may play a role in the synergetic effect of PBM and radiation. CONCLUSION PBM technique may be one of the most appropriate approaches for radiosensitizing tumors while protecting normal tissue because of its low cost and low training requirements for staff.
Collapse
|
19
|
Impact of preconditioned diabetic stem cells and photobiomodulation on quantity and degranulation of mast cells in a delayed healing wound simulation in type one diabetic rats. Lasers Med Sci 2021; 37:1593-1604. [PMID: 34476655 DOI: 10.1007/s10103-021-03408-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023]
Abstract
Herein, we report the influence of administering different protocols of preconditioned diabetic adipose-derived mesenchymal stem cells (ADSs) with photobiomodulation in vitro, and photobiomodulation in vivo on the number of mast cells (MCs), their degranulation, and wound strength in the maturation step of a Methicillin-resistant Staphylococcus aureus (MRSA)-infectious wound model in rats with type one diabetes. An MRSA-infectious wound model was generated on diabetic animals, and they were arbitrarily assigned into five groups (G). G1 were control rats. In G2, diabetic ADS were engrafted into the wounds. In G3, diabetic ADS were engrafted into the wound, and the wound was exposed to photobiomodulation (890 nm, 890 ± 10 nm, 80 Hz, 0.2 J/cm2) in vivo. In G4, preconditioned diabetic ADS with photobiomodulation (630 and 810 nm; each 3 times with 1.2 J/cm2) in vitro were engrafted into the wound. In G5, preconditioned diabetic ADS with photobiomodulation were engrafted into the wound, and the wound was exposed to photobiomodulation in vivo. The results showed that, the maximum force in all treatment groups was remarkably greater compared to the control group (all, p = 0.000). Maximum force in G4 and G5 were superior than that other treated groups (both p = 0.000). Moreover, G3, G4, and G5 showed remarkable decreases in completely released MC granules and total numbers of MC compared to G1 and G2 (all, p = 0.000). We concluded that diabetic rats in group 5 showed significantly better results in terms of accelerated wound healing and MC count of an ischemic infected delayed healing wound model.
Collapse
|
20
|
Coimbra-Campos LMC, Silva WN, Baltazar LM, Costa PAC, Prazeres PHDM, Picoli CC, Costa AC, Rocha BGS, Santos GSP, Oliveira FMS, Pinto MCX, Amorim JH, Azevedo VAC, Souza DG, Russo RC, Resende RR, Mintz A, Birbrair A. Circulating Nestin-GFP + Cells Participate in the Pathogenesis of Paracoccidioides brasiliensis in the Lungs. Stem Cell Rev Rep 2021; 17:1874-1888. [PMID: 34003465 DOI: 10.1007/s12015-021-10181-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Multiple infectious diseases lead to impaired lung function. Revealing the cellular mechanisms involved in this impairment is crucial for the understanding of how the lungs shift from a physiologic to a pathologic state in each specific condition. In this context, we explored the pathogenesis of Paracoccidioidomycosis, which affects pulmonary functioning. The presence of cells expressing Nestin-GFP has been reported in different tissues, and their roles as tissue-specific progenitors have been stablished in particular organs. Here, we explored how Nestin-GFP+ cells are affected after lung infection by Paracoccidioides brasiliensis, a model of lung granulomatous inflammation with fibrotic outcome. We used Nestin-GFP transgenic mice, parabiosis surgery, confocal microscopy and flow cytometry to investigate the participation of Nestin-GFP+ cells in Paracoccidioides brasiliensis pathogenesis. We revealed that these cells increase in the lungs post-Paracoccidioides brasiliensis infection, accumulating around granulomas. This increase was due mainly to Nestin-GPF+ cells derived from the blood circulation, not associated to blood vessels, that co-express markers suggestive of hematopoietic cells (Sca-1, CD45 and CXCR4). Therefore, our findings suggest that circulating Nestin-GFP+ cells participate in the Paracoccidioides brasiliensis pathogenesis in the lungs.
Collapse
Affiliation(s)
| | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ludmila M Baltazar
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro A C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro H D M Prazeres
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Beatriz G S Rocha
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabrício M S Oliveira
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro C X Pinto
- Laboratory of Neuropharmacology and Neurochemistry, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Jaime H Amorim
- Center of Biological Sciences and Health, Federal University of West Bahia, Barreiras, BA, Brazil
| | - Vasco A C Azevedo
- Cellular and Molecular Genetics Laboratory, Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danielle G Souza
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Remo C Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
21
|
Kim YJ, Jeon HR, Kim SW, Kim YH, Im GB, Im J, Um SH, Cho SM, Lee JR, Kim HY, Joung YK, Kim DI, Bhang SH. Lightwave-reinforced stem cells with enhanced wound healing efficacy. J Tissue Eng 2021; 12:20417314211067004. [PMID: 34987748 PMCID: PMC8721371 DOI: 10.1177/20417314211067004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022] Open
Abstract
Comprehensive research has led to significant preclinical outcomes in modified human adipose-derived mesenchymal stem cells (hADSCs). Photobiomodulation (PBM), a technique to enhance the cellular capacity of stem cells, has attracted considerable attention owing to its effectiveness and safety. Here, we suggest a red organic light-emitting diode (OLED)-based PBM strategy to augment the therapeutic efficacy of hADSCs. In vitro assessments revealed that hADSCs basked in red OLED light exhibited enhanced angiogenesis, cell adhesion, and migration compared to naïve hADSCs. We demonstrated that the enhancement of cellular capacity was due to an increased level of intracellular reactive oxygen species. Furthermore, accelerated healing and regulated inflammatory response was observed in mice transplanted with red light-basked hADSCs. Overall, our findings suggest that OLED-based PBM may be an easily accessible and attractive approach for tissue regeneration that can be applied to various clinical stem cell therapies.
Collapse
Affiliation(s)
- Yu-Jin Kim
- School of Chemical Engineering,
Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Hye Ran Jeon
- Department of Health Sciences and
Technology, SAIHST, Sungkyunkwan University, Gangnam-gu, Seoul, Republic of
Korea
- Division of Vascular Surgery,
Samsung Medical Center, Sungkyunkwan University School of Medicine,
Gangnam-gu, Seoul, Republic of Korea
| | - Sung-Won Kim
- School of Chemical Engineering,
Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Yeong Hwan Kim
- School of Chemical Engineering,
Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Gwang-Bum Im
- School of Chemical Engineering,
Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Jisoo Im
- School of Chemical Engineering,
Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Soong Ho Um
- School of Chemical Engineering,
Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Sung Min Cho
- School of Chemical Engineering,
Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Ju-Ro Lee
- Center for Biomaterials,
Biomedical Research Institute, Korea Institute of Science and Technology,
Seoungbuk-gu, Seoul, Republic of Korea
| | - Han Young Kim
- Department of Biomedical-Chemical
Engineering, The Catholic University of Korea, Bucheon, Gyeonggi, Republic
of Korea
| | - Yoon Ki Joung
- Center for Biomaterials,
Biomedical Research Institute, Korea Institute of Science and Technology,
Seoungbuk-gu, Seoul, Republic of Korea
- Division of Bio-Medical Science
& Technology, University of Science and Technology, Yuseong-gu, Daejeon,
Republic of Korea
| | - Dong-Ik Kim
- Department of Health Sciences and
Technology, SAIHST, Sungkyunkwan University, Gangnam-gu, Seoul, Republic of
Korea
- Division of Vascular Surgery,
Samsung Medical Center, Sungkyunkwan University School of Medicine,
Gangnam-gu, Seoul, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering,
Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| |
Collapse
|