1
|
Parra-Muñoz N, López-Monsalves V, Espinoza-González R, Aravena D, Pizarro N, Soler M. Synthesis and Optical Properties of a Novel Hybrid Nanosystem Based on Covalently Modified nSiO 2 Nanoparticles with a Curcuminoid Molecule. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1022. [PMID: 38921898 PMCID: PMC11207103 DOI: 10.3390/nano14121022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024]
Abstract
A new curcuminoid molecule (3) has been designed and synthesized, containing a central -(CH2)2-COOH chain at the α carbon of the keto-enol moiety in the structure. The carboxylic acid group is added to react with exposed amino groups on silica oxide nanoparticles (nSiO2), forming an amide bond to attach the curcuminoid moiety to the nSiO2 covalently. The Kaiser test quantifies the functionalization degree, yielding 222 μmol of curcuminoid per gram of nanoparticles. The synthesized hybrid nanosystem, nSiO2-NHCO-CCM, displays significant emission properties, with a maximum emission at 538 nm in dichloromethane, similar to curcuminoid 1 (without the central chain), which emits at 565 nm in the same solvent. Solvent-induced spectral effects on the absorption and emission bands of the new hybrid nanosystem are confirmed, similar to those observed for the free curcuminoid (1). The new nanosystem is evaluated in the presence of kerosene in water, showing an emission band at 525 nm as a detection response. The ability of nSiO2-NHCO-CCM to change its fluorescence when interacting with kerosene in water is notable, as it overcomes the limitation caused by the insolubility of free curcuminoid 1 in water, allowing for the exploitation of its properties when connected to the water-stable nanosystem for future detection studies.
Collapse
Affiliation(s)
- Nicole Parra-Muñoz
- Department of Chemical Engineering, Biotechnology and Materials, Faculty of Physical and Mathematical Sciences, Universidad de Chile, Santiago 8370456, Chile (R.E.-G.)
- Centro de Materiales para la Transición y Sostenibilidad Energética, Comisión Chilena de Energía Nuclear, Ruta 68, km 20, Santiago 7600713, Chile
| | - Valentina López-Monsalves
- Department of Chemical Engineering, Biotechnology and Materials, Faculty of Physical and Mathematical Sciences, Universidad de Chile, Santiago 8370456, Chile (R.E.-G.)
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
| | - Rodrigo Espinoza-González
- Department of Chemical Engineering, Biotechnology and Materials, Faculty of Physical and Mathematical Sciences, Universidad de Chile, Santiago 8370456, Chile (R.E.-G.)
| | - Daniel Aravena
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Casilla 40, Correo 33, Santiago 9170002, Chile;
| | - Nancy Pizarro
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Viña del Mar 2520000, Chile;
| | - Monica Soler
- Department of Chemical Engineering, Biotechnology and Materials, Faculty of Physical and Mathematical Sciences, Universidad de Chile, Santiago 8370456, Chile (R.E.-G.)
| |
Collapse
|
2
|
Ochoa-Sanchez A, Sahare P, Pathak S, Banerjee A, Estevez M, Duttaroy AK, Luna-Bárcenas G, Paul S. Evaluation of the synergistic effects of curcumin-resveratrol co-loaded biogenic silica on colorectal cancer cells. Front Pharmacol 2024; 15:1341773. [PMID: 38919255 PMCID: PMC11196415 DOI: 10.3389/fphar.2024.1341773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Colorectal cancer (CRC) remains a significant global health concern, being the third most diagnosed cancer in men and the second most diagnosed cancer in women, with alarming mortality rates. Natural phytochemicals have gained prominence among various therapeutic avenues explored due to their diverse biological properties. Curcumin, extracted from turmeric, and resveratrol, a polyphenol found in several plants, have exhibited remarkable anticancer activities. However, their limited solubility and bioavailability hinder their therapeutic efficacy. To enhance the bioavailability of these compounds, nanomaterials work as effective carriers with biogenic silica (BS) attracting major attention owing to their exceptional biocompatibility and high specific surface area. In this study, we developed Curcumin-resveratrol-loaded BS (Cur-Res-BS) and investigated their effects on colorectal cancer cell lines (HCT-116 and Caco-2). Our results demonstrated significant concentration-dependent inhibition of cell viability in HCT-116 cells and revealed a complex interplay of crucial proto-onco or tumor suppressor genes, such as TP53, Bax, Wnt-1, and CTNNB1, which are commonly dysregulated in colorectal cancer. Notably, Cur-Res-BS exhibited a synergistic impact on key signaling pathways related to colorectal carcinogenesis. While these findings are promising, further investigations are essential to comprehensively understand the mechanisms and optimize the therapeutic strategy. Moreover, rigorous safety assessments and in vitro studies mimicking the in vivo environment are imperative before advancing to in vivo experiments, ensuring the potential of Cur-Res-BS as an efficient treatment for CRC.
Collapse
Affiliation(s)
- Adriana Ochoa-Sanchez
- NatProLab, School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro, Mexico
| | - Padmavati Sahare
- Institute of Advanced Materials for Sustainable Manufacturing, School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro, Mexico
| | - Surajit Pathak
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Antara Banerjee
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Miriam Estevez
- Centre of Applied Physics and Advanced Technologies (CFATA), National Autonomous University of Mexico, Queretaro, Mexico
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Gabriel Luna-Bárcenas
- Institute of Advanced Materials for Sustainable Manufacturing, School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro, Mexico
| | - Sujay Paul
- NatProLab, School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro, Mexico
| |
Collapse
|
3
|
Li Q, Bao M, Li W, He C. Fast Solution Blow Spinning of Lotus-Leaf-Inspired SiO 2 Nanofiber Sponge for High Efficiency Purification. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22411-22420. [PMID: 38632871 DOI: 10.1021/acsami.4c01613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Massive production of SiO2 nanofibers with both high durability and exceptional performance remains a significant challenge. Herein, a novel approach was introduced to achieve the massive production of SiO2 nanofibers with lotus-leaf-inspired surfaces by combining solution blowing spinning (SBS) and the polymer-derived ceramics method. Based on the SBS technique, three types of precursor nanofiber products were fast spined with methyl silsesquioxane polymer and polymethyl hydrogen siloxane employed as Si sources. The flow rate of the SBS spined Si-based ceramic nanofibers was enhanced to 20 mL·h-1. Furthermore, through the integration of hydrophobic-oleophilic SiO2 nanoparticles into the precursor solution, SiO2 nanofibers with lotus-leaf nanoprotrusion surfaces were fabricated. Nanoparticle-decorated SiO2 fibers demonstrated excellent hydrophobicity (138.3°), compression resilience (∼60%), proficiency in organic pollutant adsorption, high-temperature resistance (∼1100 °C), and outstanding thermal insulation properties (thermal conductivity of 0.0165 W·(m·K)-1).
Collapse
Affiliation(s)
- Qingyang Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei 430200, China
| | - Mengzhe Bao
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
| | - Wenbin Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei 430200, China
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
| | - Chong He
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei 430200, China
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
| |
Collapse
|
4
|
Du C, Fang K, Zhang H, Xu J, Sun MA, Yang S. Improved solar-driven water purification using an eco-friendly and cost-effective aerogel-based interfacial evaporator with exceptional photocatalytic capabilities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119916. [PMID: 38150926 DOI: 10.1016/j.jenvman.2023.119916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
As a promising solution to address the global challenge of freshwater scarcity, solar-powered interfacial steam generation has undergone notable advancements. This study introduces a novel solar-driven interfacial evaporation membrane (ZnIn2S4@SiO2/ACSA, ZSAS) comprising a ZnIn2S4@SiO2 composite and a black sodium alginate aerogel infused with activated carbon. The ZSAS membrane demonstrates exceptional light absorption and thermal insulation, leading to elevated surface temperatures and reduced heat dissipation into the bulk water. Furthermore, the incorporation of AC reinforces the mechanical properties of the ZSAS membrane and enhances the water purification performance. These collective features result in an impressive evaporation rate of 1.485 kg m-2 h-1 and a high photothermal conversion efficiency of 91.2% under 1 sun irradiation for the optimal ZSAS membrane. Moreover, the optimal ZSAS membrane can effectively remove salts, heavy metal ions, and organic pollutants, benefitting from its superior evaporation separation effect and the photocatalytic properties of the ZnIn2S4@SiO2 composite.
Collapse
Affiliation(s)
- Cui Du
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
| | - Kun Fang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu, 225002, PR China
| | - Huanying Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu, 225002, PR China
| | - Jing Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu, 225002, PR China
| | - Ming-An Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China.
| | - Shengyang Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu, 225002, PR China.
| |
Collapse
|
5
|
Vorotnikov YA, Vorotnikova NA, Shestopalov MA. Silica-Based Materials Containing Inorganic Red/NIR Emitters and Their Application in Biomedicine. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5869. [PMID: 37687562 PMCID: PMC10488461 DOI: 10.3390/ma16175869] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
The low absorption of biological substances and living tissues in the red/near-infrared region (therapeutic window) makes luminophores emitting in the range of ~650-1350 nm favorable for in vitro and in vivo imaging. In contrast to commonly used organic dyes, inorganic red/NIR emitters, including ruthenium complexes, quantum dots, lanthanide compounds, and octahedral cluster complexes of molybdenum and tungsten, not only exhibit excellent emission in the desired region but also possess additional functional properties, such as photosensitization of the singlet oxygen generation process, upconversion luminescence, photoactivated effects, and so on. However, despite their outstanding functional applicability, they share the same drawback-instability in aqueous media under physiological conditions, especially without additional modifications. One of the most effective and thus widely used types of modification is incorporation into silica, which is (1) easy to obtain, (2) biocompatible, and (3) non-toxic. In addition, the variety of morphological characteristics, along with simple surface modification, provides room for creativity in the development of various multifunctional diagnostic/therapeutic platforms. In this review, we have highlighted biomedical applications of silica-based materials containing red/NIR-emitting compounds.
Collapse
Affiliation(s)
- Yuri A. Vorotnikov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev ave., 630090 Novosibirsk, Russia;
| | | | - Michael A. Shestopalov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev ave., 630090 Novosibirsk, Russia;
| |
Collapse
|
6
|
Tanwar S, Wu L, Zahn N, Raj P, Ghaemi B, Chatterjee A, Bulte JWM, Barman I. Targeted Enzyme Activity Imaging with Quantitative Phase Microscopy. NANO LETTERS 2023; 23:4602-4608. [PMID: 37154678 PMCID: PMC10798004 DOI: 10.1021/acs.nanolett.3c01090] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Quantitative phase imaging (QPI) is a powerful optical imaging modality for label-free, rapid, and three-dimensional (3D) monitoring of cells and tissues. However, molecular imaging of important intracellular biomolecules such as enzymes remains a largely unexplored area for QPI. Herein, we introduce a fundamentally new approach by designing QPI contrast agents that allow sensitive detection of intracellular biomolecules. We report a new class of bio-orthogonal QPI-nanoprobes for in situ high-contrast refractive index (RI) imaging of enzyme activity. The nanoprobes feature silica nanoparticles (SiO2 NPs) having higher RI than endogenous cellular components and surface-anchored cyanobenzothiazole-cysteine (CBT-Cys) conjugated enzyme-responsive peptide sequences. The nanoprobes specifically aggregated in cells with target enzyme activity, increasing intracellular RI and enabling precise visualization of intracellular enzyme activity. We envision that this general design of QPI-nanoprobes could open doors for spatial-temporal mapping of enzyme activity with direct implications for disease diagnosis and evaluating the therapeutic efficacy.
Collapse
Affiliation(s)
- Swati Tanwar
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Lintong Wu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Noah Zahn
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Behnaz Ghaemi
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Arnab Chatterjee
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Jeff W M Bulte
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Inc., Baltimore, Maryland 21205, USA
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21287, USA
| |
Collapse
|
7
|
Sudhakar MP, Venkatnarayanan S, Dharani G. Fabrication and characterization of bio-nanocomposite films using κ-Carrageenan and Kappaphycus alvarezii seaweed for multiple industrial applications. Int J Biol Macromol 2022; 219:138-149. [PMID: 35926675 DOI: 10.1016/j.ijbiomac.2022.07.230] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/05/2022]
Abstract
In the present study, the whole seaweed from Kappaphycus alvarezii (containing carrageenan) was used for preparation of bio-nanocomposite films by blending with metal oxide nanoparticles such as zinc oxide (ZnONPs), cupric oxide (CuONPs) and silicon dioxide (SiO2NPs) for multiple applications, and their properties were compared with standard refined κ-Carrageenan (commercial grade). Simultaneously, the antibacterial activity and biodegradation profile of the prepared bio-nanocomposite film were also studied. The incorporation of nanoparticles into the bioplastic film matrices altered the surface morphology, increased the roughness and significantly (p < 0.05) reduced the UV transmittance, water uptake ratio (WUR), moisture content and solubility in both standard carrageenan-based bio-nanocomposite films (CBF) and Kappaphycus- based bio-nanocomposite films (KBF) compared to control. The average roughness (Ra) of KBF increased compared to CBF; however, CBF showed better tensile strength compared to KBF. Both KBF and CBF loaded with nanoparticles exhibited strong antibacterial activity against Staphylococcus aureus and Escherichia coli. However, KBF performed better compared to CBF. Antimicrobial effect of nanoparticles delayed the degradation of the bio-nanocomposite films. The present study proposes that the whole seaweed (Kappaphycus alvarezii) can be used directly for multiple industrial applications.
Collapse
Affiliation(s)
- Muthiyal Prabakaran Sudhakar
- National Institute of Ocean Technology (NIOT), Ministry of Earth Sciences (Govt. of India), Chennai 600 100, Tamil Nadu, India; Department of Biomaterials, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (Saveetha University), Chennai 600 077, Tamil Nadu, India.
| | - Srinivas Venkatnarayanan
- National Institute of Ocean Technology (NIOT), Ministry of Earth Sciences (Govt. of India), Chennai 600 100, Tamil Nadu, India
| | - Gopal Dharani
- National Institute of Ocean Technology (NIOT), Ministry of Earth Sciences (Govt. of India), Chennai 600 100, Tamil Nadu, India.
| |
Collapse
|
8
|
Surface modification of nanoparticles to improve oil recovery Mechanisms: A critical review of the methods, influencing Parameters, advances and prospects. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Zhang P, Qin B, Xia J. UV Curable Robust Durable Hydrophobic Coating Based on Epoxy Polyhedral Oligomeric Silsesquioxanes (EP-POSS) and Their Derivatives. ACS OMEGA 2022; 7:17108-17118. [PMID: 35647429 PMCID: PMC9134229 DOI: 10.1021/acsomega.2c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Hydrophobic coatings have considerable potential applications in many fields. Ease of operation and high durability are essential for practical use. Fast curing and being solvent-free are a plus, and if they possess certain characteristics (antigraffiti, good adhesion, high hardness, heat resistance, wide range of applicability, etc.) at the same time, it is a dream solution. Herein, a facile one-step approach with the above features was reported for a UV curable robust hydrophobic coating based on Epoxy Polyhedral Oligomeric Silsesquioxanes (EP-POSSs). The structure and surface morphology of these EP-POSSs and their derivatives were systematically studied. Because of the core-in-cage structure which was constructed by repeating units of R-Si(O1/2)3 and the strong covalent bonds of Si-C and Si-O, the coatings displayed high pencil hardness (6-8H), high thermal stability with initial decomposition temperature around 350-400 °C, and a high water contact angle (up to 108.06°) even after outdoor exposure for a month. These POSSs and their derivatives are expected to find uses in various applications such as stain resistance, self-cleaning, scratch resistance, and cigarette moxibustion resistance of wood furniture, kitchenware, and medical and industrial appliances.
Collapse
Affiliation(s)
- Peng Zhang
- South
China Advanced Institute for Soft Matter Science and Technology (AISMST),
School of Emergent Soft Matter, South China
University of Technology, Guangzhou 510640, People’s Republic
of China
- Guangdong
Provincial Key Laboratory of Functional and Intelligent Hybrid Materials
and Devices, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Ban Qin
- South
China Advanced Institute for Soft Matter Science and Technology (AISMST),
School of Emergent Soft Matter, South China
University of Technology, Guangzhou 510640, People’s Republic
of China
- Guangdong
Provincial Key Laboratory of Functional and Intelligent Hybrid Materials
and Devices, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Jianhui Xia
- South
China Advanced Institute for Soft Matter Science and Technology (AISMST),
School of Emergent Soft Matter, South China
University of Technology, Guangzhou 510640, People’s Republic
of China
- Guangdong
Provincial Key Laboratory of Functional and Intelligent Hybrid Materials
and Devices, South China University of Technology, Guangzhou 510640, People’s Republic of China
| |
Collapse
|
10
|
Engineering surface amphiphilicity of polymer nanostructures. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2021.101489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|