1
|
Abdelmawgood IA, Kotb MA, Hassan HS, Mahana NA, Rochdi AM, Sayed NH, Elsafoury RH, Saber AM, Youssef MN, Waheeb NG, Al-Rifai MWA, Badr AM, Abdelkader AE. Gentisic acid attenuates ovalbumin-induced airway inflammation, oxidative stress, and ferroptosis through the modulation of Nrf2/HO-1 and NF-κB signaling pathways. Int Immunopharmacol 2024; 146:113764. [PMID: 39689597 DOI: 10.1016/j.intimp.2024.113764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/15/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024]
Abstract
Asthma, a lung disorder that causes impaired respiratory function, is characterized by an apparent infiltration of inflammatory cells. Gentisic acid (GA), a phenolic acid common in food ingredients, has antioxidant, antibacterial, and anti-inflammatory properties. Its potential application in mitigating asthma, however, remains unexplored. The current investigation studies GA's therapeutic potential for allergic asthma. BALB/c mice were challenged and sensitized to ovalbumin (OVA) to establish the animal model. We investigated how GA affected asthmatic behavior, leukocyte infiltration, histopathological alterations, oxidative stress, immunoglobulin E (IgE) production, and airway inflammation. ELISA and immunohistochemistry (IHC) techniques were employed to measure Nrf2, HO-1, and NF-κB's expression. To investigate the protein-ligand interaction between GA and Keap1, molecular docking analysis was utilized. The GA treatment significantly reduced nasal scratching, oxidative stress in the lungs, the infiltration of inflammatory cells, IgE content, iron accumulation, and NF-κB activation. It also upregulated Nrf2 and HO-1. Additionally, in silico studies revealed GA and Keap1 binding to activate Nrf2 by disrupting the Keap1-Nrf2 interaction. The study at hand is the first to investigate and report on the immunomodulatory impacts of GA on induced asthma in BALB/c mice. Our findings reveal that GA can be utilized as an anti-asthmatic agent via Nrf2/HO-1 and NF-κB pathway regulation.
Collapse
Affiliation(s)
| | - Mohamed A Kotb
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | | | - Noha A Mahana
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Ahmed M Rochdi
- Biotechnology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Nader Hassan Sayed
- Biotechnology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Reem H Elsafoury
- Biotechnology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Amal M Saber
- Biotechnology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | | | - Nancy George Waheeb
- Biotechnology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Mohamed W A Al-Rifai
- Al-Makassed Islamic Charitable, East Jerusalem, Biet Jala Hospital, Biet Jala, Palestine
| | - Abeer Mahmoud Badr
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt.
| | | |
Collapse
|
2
|
Cunha LB, Lepore ED, Medeiros CCB, Sorrechia R, Pietro RCLR, Corrêa MA. Can Gentisic Acid Serve as a High-Performance Antioxidant with Lower Toxicity for a Promising New Topical Application? Life (Basel) 2024; 14:1022. [PMID: 39202764 PMCID: PMC11355177 DOI: 10.3390/life14081022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Gentisic acid (2,5-dihydroxybenzoic acid) is primarily found naturally in plants and has demonstrated a significant range of biological activities; however, its efficacy and safety as a topical application ingredient are not yet well established. Thus, the compound's potential antioxidant and antimicrobial properties were evaluated for efficacy, while the cytotoxicity was evaluated for safety. The antioxidant activity, measured by the DPPH kinetic method, showed an Efficiency Concentration (EC50) of 0.09 with an antioxidant reducing power (ARP) of 11.1. The minimum inhibitory concentration (MIC) against Staphylococcus aureus was 4.15 mg/mL, Escherichia coli was 4.00 mg/mL, Candida albicans was 3.00 mg/mL, and Cutibacterium acnes was 3.60 mg/mL, and the MIC for C. acnes has remained unpublished until now. The substance showed low cytotoxicity by the neutral red uptake (NRU) methodology against HaCat, HDFa, and HepG2 cells at concentrations of up to 10.0, 7.3, and 4.0 mM, respectively, also representing unpublished data. This evidence demonstrates gentisic acid as a promising active substance for skin topical application in the cosmetic or pharmaceutical industry.
Collapse
Affiliation(s)
| | | | | | | | | | - Marcos A. Corrêa
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (L.B.C.); (E.D.L.); (C.C.B.M.)
| |
Collapse
|
3
|
Yagi S, Zengin G, Ibrahime Sinan K, Yavuz Paksoy M, Cziáky Z, Jekő J, Dall'Acqua S. Analyzing the Chemical Constituents and In Vitro Biological Effects of Extracts Artemisia absinthium L. Extracts Obtained Using Different Methodologies and Solvents. Chem Biodivers 2024; 21:e202400893. [PMID: 38779862 DOI: 10.1002/cbdv.202400893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
The present study aimed to investigate the chemical constituents of different extracts from aerial parts of A. absinthium and to evaluate their antioxidant and enzyme inhibition activity. Extracts were prepared by maceration, infusion or Soxhlet techniques. Results showed that the highest total phenolic and flavonoids contents was recorded respectively from the hexane extract prepared by maceration and ethyl acetate extract obtained by Soxhlet method. The characteristic compounds of Artemisia species artemetin, casticin, sesartemin and yangambin in addition to coumarins were identified in all extracts. Aqueous extract obtained by infusion exerted the highest radical scavenging and ions reducing properties while that prepared by maceration displayed the highest chelating power. Methanol extracts obtained by the two methods of extraction exerted the highest anti-Tyr activity while that obtained by maceration showed the best α-glucosidase inhibition activity. These findings indicated that A. absinthium is a rich source of bioactive molecules with possible therapeutic applications.
Collapse
Affiliation(s)
- Sakina Yagi
- Department of Botany, Faculty of Science, University of Khartoum, Khartoum, Sudan
- Université de Lorraine, INRAE, LAE, F-54000, Nancy, France
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey
| | | | - Mehmet Yavuz Paksoy
- Munzur University, Tunceli Vocational School, Medical Documentation and Secretaryship Pr., Tunceli, Turkey
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, Nyíregyháza, Hungary
| | - József Jekő
- Munzur University, Tunceli Vocational School, Medical Documentation and Secretaryship Pr., Tunceli, Turkey
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131, Padua, Italy
| |
Collapse
|
4
|
Mîrza CM, Mîrza TV, Odagiu ACM, Uifălean A, But AE, Pârvu AE, Bulboacă AE. Phytochemical Analysis and Antioxidant Effects of Prunella vulgaris in Experimental Acute Inflammation. Int J Mol Sci 2024; 25:4843. [PMID: 38732062 PMCID: PMC11084636 DOI: 10.3390/ijms25094843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Prunella vulgaris (PV) is one of the most commonly used nutraceuticals as it has been proven to have anti-inflammatory and antioxidant properties. The aim of this study was to evaluate the phytochemical composition of PV and its in vivo antioxidant properties. A phytochemical analysis measuring the total phenolic content (TPC), the identification of phenolic compounds by HPLC-DAD-ESI, and the evaluation of the in vitro antioxidant activity by the DPPH assay of the extract were performed. The antioxidant effects on inflammation induced by turpentine oil were experimentally tested in rats. Seven groups with six animals each were used: a control group, the experimental inflammation treatment group, the experimental inflammation and diclofenac sodium (DS) treatment group, and four groups with their inflammation treated using different dilutions of the extract. Serum redox balance was assessed based on total oxidative status (TOS), nitric oxide (NO), malondialdehyde (MDA), total antioxidant capacity (TAC), total thiols, and an oxidative stress index (OSI) contents. The TPC was 0.28 mg gallic acid equivalents (GAE)/mL extract, while specific representatives were represented by caffeic acid, p-coumaric acid, dihydroxybenzoic acid, gentisic acid, protocatechuic acid, rosmarinic acid, vanillic acid, apigenin-glucuronide, hesperidin, kaempferol-glucuronide. The highest amount (370.45 μg/mL) was reported for hesperidin, which is a phenolic compound belonging to the flavanone subclass. The antioxidant activity of the extracts, determined using the DPPH assay, was 27.52 mmol Trolox/mL extract. The PV treatment reduced the oxidative stress by lowering the TOS, OSI, NO, and MDA and by increasing the TAC and thiols. In acute inflammation, treatment with the PV extract reduced oxidative stress, with lower concentrations being more efficient and having a better effect than DS.
Collapse
Affiliation(s)
- Camelia-Manuela Mîrza
- Department of Morpho-Functional Sciences, Discipline of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.-M.M.); (A.U.); (A.E.B.); (A.E.P.); (A.-E.B.)
| | - Tudor-Valentin Mîrza
- Department of Epidemiology of Communicable Diseases, National Institute of Public Health—Regional Centre of Public Health, 400376 Cluj-Napoca, Romania
| | - Antonia Cristina Maria Odagiu
- Department of Environmental Engineering and Protection, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Ana Uifălean
- Department of Morpho-Functional Sciences, Discipline of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.-M.M.); (A.U.); (A.E.B.); (A.E.P.); (A.-E.B.)
| | - Anca Elena But
- Department of Morpho-Functional Sciences, Discipline of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.-M.M.); (A.U.); (A.E.B.); (A.E.P.); (A.-E.B.)
| | - Alina Elena Pârvu
- Department of Morpho-Functional Sciences, Discipline of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.-M.M.); (A.U.); (A.E.B.); (A.E.P.); (A.-E.B.)
| | - Adriana-Elena Bulboacă
- Department of Morpho-Functional Sciences, Discipline of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.-M.M.); (A.U.); (A.E.B.); (A.E.P.); (A.-E.B.)
| |
Collapse
|
5
|
Raygoza Garay JA, Turpin W, Lee SH, Smith MI, Goethel A, Griffiths AM, Moayyedi P, Espin-Garcia O, Abreu M, Aumais GL, Bernstein CN, Biron IA, Cino M, Deslandres C, Dotan I, El-Matary W, Feagan B, Guttman DS, Huynh H, Dieleman LA, Hyams JS, Jacobson K, Mack D, Marshall JK, Otley A, Panaccione R, Ropeleski M, Silverberg MS, Steinhart AH, Turner D, Yerushalmi B, Paterson AD, Xu W, Croitoru K. Gut Microbiome Composition Is Associated With Future Onset of Crohn's Disease in Healthy First-Degree Relatives. Gastroenterology 2023; 165:670-681. [PMID: 37263307 DOI: 10.1053/j.gastro.2023.05.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND & AIMS The cause of Crohn's disease (CD) is unknown, but the current hypothesis is that microbial or environmental factors induce gut inflammation in genetically susceptible individuals, leading to chronic intestinal inflammation. Case-control studies of patients with CD have cataloged alterations in the gut microbiome composition; however, these studies fail to distinguish whether the altered gut microbiome composition is associated with initiation of CD or is the result of inflammation or drug treatment. METHODS In this prospective cohort study, 3483 healthy first-degree relatives (FDRs) of patients with CD were recruited to identify the gut microbiome composition that precedes the onset of CD and to what extent this composition predicts the risk of developing CD. We applied a machine learning approach to the analysis of the gut microbiome composition (based on 16S ribosomal RNA sequencing) to define a microbial signature that associates with future development of CD. The performance of the model was assessed in an independent validation cohort. RESULTS In the validation cohort, the microbiome risk score (MRS) model yielded a hazard ratio of 2.24 (95% confidence interval, 1.03-4.84; P = .04), using the median of the MRS from the discovery cohort as the threshold. The MRS demonstrated a temporal validity by capturing individuals that developed CD up to 5 years before disease onset (area under the curve > 0.65). The 5 most important taxa contributing to the MRS included Ruminococcus torques, Blautia, Colidextribacter, an uncultured genus-level group from Oscillospiraceae, and Roseburia. CONCLUSION This study is the first to demonstrate that gut microbiome composition is associated with future onset of CD and suggests that gut microbiome is a contributor in the pathogenesis of CD.
Collapse
Affiliation(s)
- Juan Antonio Raygoza Garay
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Zane Cohen Center for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Williams Turpin
- Zane Cohen Center for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Sun-Ho Lee
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Zane Cohen Center for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Michelle I Smith
- Zane Cohen Center for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ashleigh Goethel
- Zane Cohen Center for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Anne M Griffiths
- Division of Gastroenterology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Paul Moayyedi
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Osvaldo Espin-Garcia
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; Biostatistics Department, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Maria Abreu
- Division of Gastroenterology, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Guy L Aumais
- Hopital Maisonneuve-Rosemont, Montreal, Quebec, Canada
| | - Charles N Bernstein
- Inflammatory Bowel Disease Clinical and Research Center and Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Winnipeg, Canada
| | - Irit A Biron
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
| | - Maria Cino
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Colette Deslandres
- Department of Hepatology and Pediatric Nutrition, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
| | - Iris Dotan
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
| | - Wael El-Matary
- Pediatric Gastroenterology, Max Rady College of Medicine, University of Manitoba, Manitoba, Winnipeg, Canada
| | - Brian Feagan
- Departments of Epidemiology and Biostatistics, University of Western Ontario, London, Ontario, Canada
| | - David S Guttman
- Center for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Hien Huynh
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Levinus A Dieleman
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Jeffrey S Hyams
- Division of Digestive Diseases, Hepatology, and Nutrition, Connecticut Children's Medical Center, Hartford, Connecticut
| | - Kevan Jacobson
- Research Institute, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - David Mack
- Division of Gastroenterology, Hepatology & Nutrition, Children's Hospital of Eastern Ontario and University of Ottawa, Ottawa, Ontario, Canada
| | - John K Marshall
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Anthony Otley
- Division of Gastroenterology, Izaak Walton Killam Hospital, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Remo Panaccione
- Inflammatory Bowel Disease Unit, University of Calgary, Calgary, Alberta, Canada
| | - Mark Ropeleski
- Gastrointestinal Diseases Research Unit, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Mark S Silverberg
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - A Hillary Steinhart
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Dan Turner
- The Juliet Keidan Institute of Pediatric Gastroenterology and Nutrition, Shaare Zedek Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Baruch Yerushalmi
- Pediatric Gastroenterology Unit, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Andrew D Paterson
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; Genetics and Genome Biology, The Hospital for Sick Children Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Wei Xu
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; Biostatistics Department, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.
| | - Kenneth Croitoru
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Zane Cohen Center for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Rohatgi A, Gupta P. Benzoic acid derivatives as potent antibiofilm agents against Klebsiella pneumoniae biofilm. J Biosci Bioeng 2023; 136:190-197. [PMID: 37479559 DOI: 10.1016/j.jbiosc.2023.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/23/2023]
Abstract
Klebsiella pneumoniae is responsible for a significant proportion of human urinary tract infections, and its biofilm is a major virulence. One potential approach to controlling biofilm-associated infections is targeting the adhesin MrkD1P to disrupt biofilm formation. We employed Schrodinger's Maestro tool with the OPLS 2005 force field to dock compounds with the target protein. Two benzoic acid derivatives, 3-hydroxy benzoic acid and 2,5-dihydroxybenzoic acid, had strong binding free energies (-55.57 and -18.68 kcal/mol) and were the most potent compounds. The in-vitro experiments were conducted to validate the in-silico results. The results showed that both compounds effectively inhibited biofilm formation at low concentrations (4 and 8 mg/mL, respectively) and had antibiofilm activity, restricting cell attachment. Both compounds demonstrated a strong biofilm inhibitory effect, with 97% and 89% reduction in biofilm by 3-hydroxy benzoic acid and 2,5-dihydroxybenzoic acid, respectively. These findings suggest that natural compounds can be a potential source of new drugs to combat biofilm-associated infections. The study highlights the potential of targeting adhesin MrkD1P as an effective approach to controlling biofilm-associated infections caused by K. pneumoniae. The results may have implications for the development of new therapies for biofilm-associated infections and pave the way for future research in this area.
Collapse
Affiliation(s)
- Anuj Rohatgi
- Department of Biotechnology, National Institute of Technology, Raipur 492010, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology, Raipur 492010, India.
| |
Collapse
|
7
|
Gu L, Wang W, Wu B, Ji S, Xia Q. Preparation and in vitro characterization studies of astaxanthin-loaded nanostructured lipid carriers with antioxidant properties. J Biomater Appl 2023:8853282231189779. [PMID: 37452613 DOI: 10.1177/08853282231189779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The purpose of this study was to evaluate the astaxanthin-loaded nanostructured lipid carriers (ASX-NLC) prepared using a high-pressure homogenization transport system for local application of astaxanthin. Dynamic light scattering (DLS) and X-ray diffraction (XRD) were used to study the effect of microencapsulation on the properties of ASX-NLC. The mean size of ASX-NLC was about 108.43 ± 0.26 nm and PdI was 0.176 ± 0.002. The ASX-NLC had high encapsulation efficiency which was 95.69 ± 0.13%. Good light stability and temperature stability were shown at the ASX-NLC, indicating that the preparation process was feasible. The 2,2-diphenyl-1-pyridylohydrazinyl (DPPH) scavenging test showed that ASX-NLC could still play an antioxidant role. In vitro release studies showed that compared with an astaxanthin ethanol solution, an ASX-NLC could maintain astaxanthin release more effectively. In vitro permeation studies showed that ASX-NLC could increase astaxanthin retention in the skin. In conclusion, ASX-NLC could significantly enhance astaxanthin accumulation during dermal applications. The research results have important reference significance for local skin applications and provide a basis for the development of nanostructured lipid carriers. ASX-NLC might be suitable carriers for the local application of astaxanthin.
Collapse
Affiliation(s)
- Liyuan Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Wenjuan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Bi Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Suping Ji
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Qiang Xia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
8
|
Stability and Antibiotic Potency Improvement of Levofloxacin by Producing New Salts with 2,6- and 3,5-Dihydroxybenzoic Acid and Their Comprehensive Structural Study. Pharmaceutics 2022; 15:pharmaceutics15010124. [PMID: 36678753 PMCID: PMC9861140 DOI: 10.3390/pharmaceutics15010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023] Open
Abstract
Recently, solid-state engineering has become a promising approach to improving the stability and potency of antibiotics. Levofloxacin (LF) is a broad-spectrum fluoroquinolone antibiotic marketed in solid and solution dosage forms. However, this substance forms solid hydrates under ambient conditions and degrades due to lighting, which may change its solid properties and dose. In addition, resistance cases have been reported due to long-time antibiotic usage. This research aims to allow LF to react with antioxidant dihydroxybenzoic acid (DHBA), which has low antimicrobial activity, to produce a more stable compound under water and lighting conditions and improve LF's potency. The experiment begins with a screening to select potential DHBA isomers that can react with LF and predict the stoichiometric ratio using phase diagrams, which show that 2,6-DHBA and 3,5-DHBA are prospective antioxidants that can react with LF in a (1:1) molar ratio. Multicomponent systems are prepared by dissolving the LF-DHBA mixture in (1:1) ethanol-methanol (95% grade) and evaporating it. Then, the new solid phase formation is confirmed by thermal analysis and powder X-ray diffractometry. Next, infrared spectrophotometry and neutron magnetic resonance analyses are used to identify the LF-DHBA's interactions. Finally, single-crystal X-ray diffractometry is used to solve the three-dimensional structure of the multicomponent system. We then conduct a hygroscopicity and stability test followed by a lighting and potency test using the microdilution method. Our data reveal that both reactions produce salts, which are named LF-26 and LF-35, respectively. Structurally, LF-26 is found in an anhydrous form with a triclinic crystal packing, while LF-35 is a hemihydrate in a monoclinic system. Afterward, both salts are proven more stable regarding water adsorption and UV lighting than LF. Finally, both multicomponent systems have an approximately two-fold higher antibiotic potency than LF. LF-26 and LF-35 are suitable for further development in solid and liquid dosage formulations, especially LF-35, which has superior stability compared with LF-26.
Collapse
|
9
|
Snoussi M, Ahmad I, Aljohani AMA, Patel H, Abdulhakeem MA, Alhazmi YS, Tepe B, Adnan M, Siddiqui AJ, Sarikurkcu C, Riadh B, De Feo V, Alreshidi M, Noumi E. Phytochemical Analysis, Antioxidant, and Antimicrobial Activities of Ducrosia flabellifolia: A Combined Experimental and Computational Approaches. Antioxidants (Basel) 2022; 11:2174. [PMID: 36358545 PMCID: PMC9686979 DOI: 10.3390/antiox11112174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 09/02/2023] Open
Abstract
Ducrosia flabellifolia Boiss. is a rare desert plant known to be a promising source of bioactive compounds. In this paper, we report for the first time the phytochemical composition and biological activities of D. flabellifolia hydroalcoholic extract by using liquid chromatography-electrospray tandem mass spectrometry (ESI-MS/MS) technique. The results obtained showed the richness of the tested extract in phenols, tannins, and flavonoids. Twenty-three phytoconstituents were identified, represented mainly by chlorogenic acid, followed by ferulic acid, caffeic acid, and sinapic acid. The tested hydroalcoholic extract was able to inhibit the growth of all tested bacteria and yeast on agar Petri dishes at 3 mg/disc with mean growth inhibition zone ranging from 8.00 ± 0.00 mm for Enterococcus cloacae (E. cloacae) to 36.33 ± 0.58 mm for Staphylococcus epidermidis. Minimal inhibitory concentration ranged from 12.5 mg/mL to 200 mg/mL and the hydroalcoholic extract from D. flabellifolia exhibited a bacteriostatic and fungistatic character. In addition, D. flabellifolia hydroalcoholic extract possessed a good ability to scavenge different free radicals as compared to standard molecules. Molecular docking studies on the identified phyto-compounds in bacterial, fungal, and human peroxiredoxin 5 receptors were performed to corroborate the in vitro results, which revealed good binding profiles on the examined protein targets. A standard atomistic 100 ns dynamic simulation investigation was used to further evaluate the interaction stability of the promising phytocompounds, and the results showed conformational stability in the binding cavity. The obtained results highlighted the medicinal use of D. flabellifolia as source of bioactive compounds, as antioxidant, antibacterial, and antifungal agent.
Collapse
Affiliation(s)
- Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Ha’il 2440, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India
| | | | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India
| | | | - Yasser S. Alhazmi
- Department of Biology, College of Science, University of Hail, Ha’il 2440, Saudi Arabia
| | - Bektas Tepe
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, TR-79000 Kilis, Turkey
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Ha’il 2440, Saudi Arabia
| | - Arif J. Siddiqui
- Department of Biology, College of Science, University of Hail, Ha’il 2440, Saudi Arabia
| | - Cengiz Sarikurkcu
- Faculty of Pharmacy, Afyonkarahisar Health Sciences University, TR-03100 Afyonkarahisar, Turkey
| | - Badraoui Riadh
- Department of Biology, College of Science, University of Hail, Ha’il 2440, Saudi Arabia
- Section of Histology Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta 1007, Road Djebal Lakhdhar, Tunis 1007, Tunisia
- Department of HistoEmbryology and Cytogenetics, Medicine Faculty of Sfax, University of Sfax, Road of Majida Boulia, Sfax 3029, Tunisia
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Ha’il 2440, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Ha’il 2440, Saudi Arabia
| | - Emira Noumi
- Department of Biology, College of Science, University of Hail, Ha’il 2440, Saudi Arabia
| |
Collapse
|
10
|
Kumar H, Kumar D, Kumar P, Thareja S, Marwaha MG, Navik U, Marwaha RK. Synthesis, biological evaluation and in-silico ADME studies of novel series of thiazolidin-2,4-dione derivatives as antimicrobial, antioxidant and anticancer agents. BMC Chem 2022; 16:68. [PMID: 36109764 PMCID: PMC9479363 DOI: 10.1186/s13065-022-00861-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
Background A novel series of thiazolidine-2,4-dione molecules was derived and their chemical structures were established using physiochemical parameters and spectral techniques (1H-NMR, IR, MS etc.). The synthesized molecule were then evaluated for their antioxidant, anticancer and antimicrobial potential. Results and discussion Serial tube dilution method was employed to evaluate the antimicrobial potential against selected fungal and bacterial strains by taking fluconazole and cefadroxil as reference antifungal and antibacterial drugs respectively. 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity was used to assess the antioxidant potential of the synthesized analogues. Further, the anticancer potential of the selected molecules was assessed against DU-145 cancer cell lines using MTT assay. The drug-likeness was also evaluated by studying in-silico ADME parameters of the synthesized analogues. Conclusion In antioxidant evaluation studies, the analogue H5 with IC50 = 14.85 μg/mL was found to be the most active molecule. The antimicrobial evaluation outcomes suggested that the molecules H5, H13, H15 and H18 possessed moderate to promising activity against the selected species of microbial strains having MIC range 7.3 µM to 26.3 µM. The results of anticancer evaluation revealed that all the screened derivatives possess mild anticancer potential. The in-silico ADME studies revealed that all the compounds were found to be drug-like.
Collapse
|
11
|
Skroza D, Šimat V, Vrdoljak L, Jolić N, Skelin A, Čagalj M, Frleta R, Generalić Mekinić I. Investigation of Antioxidant Synergisms and Antagonisms among Phenolic Acids in the Model Matrices Using FRAP and ORAC Methods. Antioxidants (Basel) 2022; 11:1784. [PMID: 36139858 PMCID: PMC9495677 DOI: 10.3390/antiox11091784] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022] Open
Abstract
The total antioxidant potential of a sample cannot be predicted from the antioxidant activity of its compounds; thus, scientists usually explain the overall activity through their combined effects (synergistic, antagonistic, or additive). Phenolic compounds are one of the most powerful and widely investigated antioxidants, but there is a lack of information about their molecular interactions. This study aimed to investigate the individual and combined antioxidant activity of equimolar mixtures (binary, ternary, quaternary, and quinary) of 10 phenolic acids (protocatechuic, gentisic, gallic, vanillic, syringic, p-coumaric, caffeic, ferulic, sinapic, and rosmarinic acid) at different concentrations using ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) assays. Gallic acid showed the highest antioxidant activity, determined using the FRAP assay (494-5033 µM Fe2+) and rosmarinic acid with the ORAC assay (50-92 µM Trolox Equivalents (TE)), while the lowest antioxidant potential was observed for p-coumaric acid (FRAP 24-113 µM Fe2+ and ORAC 20-33 µM TE). The synergistic effect (by FRAP) in the equimolar mixtures of hydroxybenzoic acids was confirmed for a large number of tested mixtures, especially at low concentrations. All mixtures containing gentisic acid showed a synergistic effect (28-89% difference). Using the ORAC method, only two mixtures of hydroxybenzoic acids showed an antagonistic effect, namely a mixture of gentisic + syringic acids (-24% difference) and gallic + vanillic acids (-30% difference), while all other mixtures showed a synergistic effect in a range of 26-236% difference. Among mixtures of hydroxycinnamic acids, the highest synergistic effect was observed for the mixtures of p-coumaric + ferulic acids and caffeic + sinapic acids with differences of 311% and 211%, respectively. The overall antioxidant activity of phenolic acids could be explained by the number or position of hydroxyl and/or methoxy functional groups as well as the compound concentration, but the influence of other parameters such as dissociation, intramolecular hydrogen bonds, and electron donating or withdrawing effect should not be neglected.
Collapse
Affiliation(s)
- Danijela Skroza
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Vida Šimat
- University Department of Marine Studies, University of Split, R. Boškovića 37, HR-21000 Split, Croatia
| | - Lucija Vrdoljak
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Nina Jolić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Anica Skelin
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, R. Boškovića 37, HR-21000 Split, Croatia
| | - Roberta Frleta
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, HR-21000 Split, Croatia
| | - Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| |
Collapse
|
12
|
Melini F, Melini V. Phenolic compounds in novel foods: insights into white and pigmented quinoa. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Izza N, Watanabe N, Okamoto Y, Wibisono Y, Umakoshi H. Characterization of entrapment behavior of polyphenols in nanostructured lipid carriers and its effect on their antioxidative activity. J Biosci Bioeng 2022; 134:269-275. [PMID: 35810136 DOI: 10.1016/j.jbiosc.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/01/2022]
Abstract
Polyphenols are widely used as antioxidant agents to protect human health. Resveratrol, kaempferol, and quercetin have been reported to have potent antioxidant activity; however, these compounds have many problems related to their practical application, such as instability and insolubility. Thus, a nanostructured lipid carrier (NLC) was utilized as a drug delivery system (DDS) to overcome these limitations. This study investigated the particle stability, drug loading performance, and antioxidant activity of polyphenols-incorporated NLCs. The particle size and distribution were suitable for DDS applications, and all the samples demonstrated good stability after 2 months of storage. Based on Raman spectroscopy analysis, polyphenols were successfully encapsulated in NLCs. Quantitative high-performance liquid chromatography analysis indicated that NLCs could load resveratrol more than kaempferol and quercetin. In addition, NLCs have successfully improved all the antioxidant activity per unit concentration of polyphenol (specific antioxidant activity) compared to the free polyphenols. Quercetin-incorporated NLCs showed the highest specific antioxidant activity. This result is the opposite of entrapment efficiency and actual antioxidant activity, most likely influenced by the location of entrapped polyphenol molecules. As it was performed, NLCs are highly recommended to be applied as an antioxidant delivery system.
Collapse
Affiliation(s)
- Ni'matul Izza
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan; Bioprocess Engineering Study Program, Faculty of Agricultural Technology, Universitas Brawijaya, Jalan Veteran, Malang 65145, East Java, Indonesia
| | - Nozomi Watanabe
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Yukihiro Okamoto
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Yusuf Wibisono
- Bioprocess Engineering Study Program, Faculty of Agricultural Technology, Universitas Brawijaya, Jalan Veteran, Malang 65145, East Java, Indonesia
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
14
|
Liu G, Zhu W, Li S, Zhou W, Zhang H, Wang J, Liu X, Zhang J, Liang L, Xu X. Antioxidant capacity and interaction of endogenous phenolic compounds from tea seed oil. Food Chem 2021; 376:131940. [PMID: 34968910 DOI: 10.1016/j.foodchem.2021.131940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/04/2022]
Abstract
Endogenous phenols play a significant role in delaying oil rancidity. In this study, the profile of 22 endogenous phenols was determined from tea seed oil by UPLC-MS/MS, of which 15 phenols were identified for the first time. Then seven phenols with high content and strong antioxidant capacity were selected to investigate interaction using the DPPH· and Rancimat. It was found that the interaction of combinations was inconsistent in different media. Combined quercetin + esculetin, caffeoyl tartaric acid + esculetin, caffeoyl tartaric acid + gentisic acid and esculetin + gentisic acid showed synergistic antioxidant effects in oil and ethanol systems. Moreover, through the evaluation of the lipid oxidation process, combined esculetin + gentisic acid exhibited the greatest synergistic antioxidant effect. Notably, combined quercetin + esculetin had an inhibitory effect on the formation of volatile compounds. These findings may provide a basis for explaining the oxidation stability of tea seed oil.
Collapse
Affiliation(s)
- Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, 225127 Yangzhou, Jiangsu Province, China
| | - Wenqi Zhu
- College of Food Science and Engineering, Yangzhou University, 225127 Yangzhou, Jiangsu Province, China
| | - Sitong Li
- College of Food Science and Engineering, Yangzhou University, 225127 Yangzhou, Jiangsu Province, China
| | - Wanli Zhou
- College of Food Science and Engineering, Yangzhou University, 225127 Yangzhou, Jiangsu Province, China
| | - Huijuan Zhang
- Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China; China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China; China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Xiaofang Liu
- College of Food Science and Engineering, Yangzhou University, 225127 Yangzhou, Jiangsu Province, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, 225127 Yangzhou, Jiangsu Province, China
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, 225127 Yangzhou, Jiangsu Province, China.
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, 225127 Yangzhou, Jiangsu Province, China.
| |
Collapse
|
15
|
|
16
|
Kalinowska M, Gołębiewska E, Świderski G, Męczyńska-Wielgosz S, Lewandowska H, Pietryczuk A, Cudowski A, Astel A, Świsłocka R, Samsonowicz M, Złowodzka AB, Priebe W, Lewandowski W. Plant-Derived and Dietary Hydroxybenzoic Acids-A Comprehensive Study of Structural, Anti-/Pro-Oxidant, Lipophilic, Antimicrobial, and Cytotoxic Activity in MDA-MB-231 and MCF-7 Cell Lines. Nutrients 2021; 13:nu13093107. [PMID: 34578985 PMCID: PMC8466373 DOI: 10.3390/nu13093107] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022] Open
Abstract
Seven derivatives of plant-derived hydroxybenzoic acid (HBA)—including 2,3-dihydroxybenzoic (2,3-DHB, pyrocatechuic), 2,4-dihydroxybenzoic (2,4-DHB, β-resorcylic), 2,5-dihydroxybenzoic (2,5-DHB, gentisic), 2,6-dihydroxybenzoic (2,6-DHB, γ-resorcylic acid), 3,4-dihydroxybenzoic (3,4-DHB, protocatechuic), 3,5-dihydroxybenzoic (3,5-DHB, α-resorcylic), and 3,4,5-trihydroxybenzoic (3,4,5-THB, gallic) acids—were studied for their structural and biological properties. Anti-/pro-oxidant properties were evaluated by using DPPH• (2,2-diphenyl-1-picrylhydrazyl), ABTS•+ (2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), FRAP (ferric-reducing antioxidant power), CUPRAC (cupric-reducing antioxidant power), and Trolox oxidation assays. Lipophilicity was estimated by means of experimental (HPLC) and theoretical methods. The antimicrobial activity against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus), Bacillus subtilis (B. subtilis), Salmonella enteritidis (S. enteritidis), and Candida albicans (C. albicans) was studied. The cytotoxicity of HBAs in MCF-7 and MDA-MB-231 cell lines was estimated. Moreover, the structure of HBAs was studied by means of experimental (FTIR, 1H, and 13C NMR) and quantum chemical DFT methods (the NBO and CHelpG charges, electrostatic potential maps, and electronic parameters based on the energy of HOMO and LUMO orbitals). The aromaticity of HBA was studied based on the calculated geometric and magnetic aromaticity indices (HOMA, Aj, BAC, I6, NICS). The biological activity of hydroxybenzoic acids was discussed in relation to their geometry, the electronic charge distribution in their molecules, their lipophilicity, and their acidity. Principal component analysis (PCA) was used in the statistical analysis of the obtained data and the discussion of the dependency between the structure and activity (SAR: structure–activity relationship) of HBAs. This work provides valuable information on the potential application of hydroxybenzoic acids as bioactive components in dietary supplements, functional foods, or even drugs.
Collapse
Affiliation(s)
- Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (G.Ś.); (R.Ś.); (M.S.)
- Correspondence:
| | - Ewelina Gołębiewska
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (G.Ś.); (R.Ś.); (M.S.)
| | - Grzegorz Świderski
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (G.Ś.); (R.Ś.); (M.S.)
| | - Sylwia Męczyńska-Wielgosz
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street, 03-195 Warsaw, Poland; (S.M.-W.); (H.L.)
| | - Hanna Lewandowska
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street, 03-195 Warsaw, Poland; (S.M.-W.); (H.L.)
| | - Anna Pietryczuk
- Department of Water Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J Street, 15-245 Bialystok, Poland; (A.P.); (A.C.)
| | - Adam Cudowski
- Department of Water Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J Street, 15-245 Bialystok, Poland; (A.P.); (A.C.)
| | - Aleksander Astel
- Environmental Chemistry Research Unit, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewskiego 22a Street, 76-200 Słupsk, Poland;
| | - Renata Świsłocka
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (G.Ś.); (R.Ś.); (M.S.)
| | - Mariola Samsonowicz
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (G.Ś.); (R.Ś.); (M.S.)
| | - Anna Barbara Złowodzka
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warszawa, Poland;
| | - Waldemar Priebe
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1901 East Rd., Houston, TX 77054, USA;
| | - Włodzimierz Lewandowski
- Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland;
| |
Collapse
|