1
|
Cade S, Prestidge C, Zhou X, Bobrovskaya L. The effects of a bioavailable curcumin formulation on Alzheimer's disease pathologies: A potential risk for neuroinflammation. IBRAIN 2024; 10:500-518. [PMID: 39691427 PMCID: PMC11649387 DOI: 10.1002/ibra.12187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/19/2024]
Abstract
Alzheimer's disease (AD) is a common cause of dementia characterized by the presence of two proteinaceous deposits in the brain. These pathologies may be a consequence of complex interactions between neurons and glia before the onset of cognitive impairments. Curcumin, a bioactive compound found in turmeric, is a promising candidate for AD because it alleviates neuropathologies in mouse models of the disease. Although its clinical efficacy has been hindered by low oral bioavailability, the development of new formulations may overcome this limitation. The purpose of this study was to determine the effects of a bioavailable curcumin formulation in a mouse model of AD. The formulation was administered to mice in drinking water after encapsulation into micelles using a previously validated method. A neuropathological assessment was performed to determine if it slows or alters the course of the disease. Cognitive performance was not included because it had already been assessed by a previous study. The bioavailable curcumin formulation was unable to alter the size or number of amyloid plaques in a transgenic mouse model. In addition, mechanisms that regulate amyloid beta production were unchanged, suggesting that the disease had not been altered. The number of reactive astrocytes in the hippocampus and dentate gyrus was not altered by curcumin. However, protein levels of glial fibrillary acidic protein were increased overall in the brain, suggesting that it may have aggravated neuroinflammation. Therefore, a higher dosage, despite its enhanced oral bioavailability, may have a potential risk for neuroinflammation.
Collapse
Affiliation(s)
- Shaun Cade
- Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Clive Prestidge
- Center for Pharmaceutical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Xin‐Fu Zhou
- Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| |
Collapse
|
2
|
Varone M, Scavo G, Colardo M, Martella N, Pensabene D, Bisesto E, Del Busso A, Segatto M. p75NTR Modulation Reduces Oxidative Stress and the Expression of Pro-Inflammatory Mediators in a Cell Model of Rett Syndrome. Biomedicines 2024; 12:2624. [PMID: 39595188 PMCID: PMC11592079 DOI: 10.3390/biomedicines12112624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Rett syndrome (RTT) is an early-onset neurological disorder primarily affecting females, leading to severe cognitive and physical disabilities. Recent studies indicate that an imbalance of redox homeostasis and exacerbated inflammatory responses are key players in the clinical manifestations of the disease. Emerging evidence highlights that the p75 neurotrophin receptor (p75NTR) is implicated in the regulation of oxidative stress (OS) and inflammation. Thus, this study is aimed at investigating the effects of p75NTR modulation by LM11A-31 on fibroblasts derived from RTT donors. Methods: RTT cells were treated with 0.1 µM of LM11A-31 for 24 h, and results were obtained using qPCR, immunofluorescence, ELISA, and Western blot techniques. Results: Our findings demonstrate that LM11A-31 reduces OS markers in RTT fibroblasts. Specifically, p75NTR modulation by LM11A-31 restores protein glutathionylation and reduces the expression of the pro-oxidant enzyme NOX4. Additionally, LM11A-31 significantly decreases the expression of the pro-inflammatory mediators interleukin-6 and interleukin-8. Additionally, LM11A-31 normalizes the expression levels of transcription factors involved in the regulation of the antioxidant response and inflammation. Conclusions: Collectively, these data suggest that p75NTR modulation may represent an effective therapeutic target to improve redox balance and reduce inflammation in RTT.
Collapse
Affiliation(s)
- Michela Varone
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.V.); (G.S.); (M.C.); (N.M.); (D.P.); (E.B.); (A.D.B.)
| | - Giuseppe Scavo
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.V.); (G.S.); (M.C.); (N.M.); (D.P.); (E.B.); (A.D.B.)
| | - Mayra Colardo
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.V.); (G.S.); (M.C.); (N.M.); (D.P.); (E.B.); (A.D.B.)
| | - Noemi Martella
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.V.); (G.S.); (M.C.); (N.M.); (D.P.); (E.B.); (A.D.B.)
| | - Daniele Pensabene
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.V.); (G.S.); (M.C.); (N.M.); (D.P.); (E.B.); (A.D.B.)
- Department of Science, University Roma Tre, 00146 Rome, Italy
| | - Emanuele Bisesto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.V.); (G.S.); (M.C.); (N.M.); (D.P.); (E.B.); (A.D.B.)
| | - Andrea Del Busso
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.V.); (G.S.); (M.C.); (N.M.); (D.P.); (E.B.); (A.D.B.)
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.V.); (G.S.); (M.C.); (N.M.); (D.P.); (E.B.); (A.D.B.)
| |
Collapse
|
3
|
Shanks HRC, Chen K, Reiman EM, Blennow K, Cummings JL, Massa SM, Longo FM, Börjesson-Hanson A, Windisch M, Schmitz TW. p75 neurotrophin receptor modulation in mild to moderate Alzheimer disease: a randomized, placebo-controlled phase 2a trial. Nat Med 2024; 30:1761-1770. [PMID: 38760589 PMCID: PMC11186782 DOI: 10.1038/s41591-024-02977-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/04/2024] [Indexed: 05/19/2024]
Abstract
p75 neurotrophin receptor (p75NTR) signaling pathways substantially overlap with degenerative networks active in Alzheimer disease (AD). Modulation of p75NTR with the first-in-class small molecule LM11A-31 mitigates amyloid-induced and pathological tau-induced synaptic loss in preclinical models. Here we conducted a 26-week randomized, placebo-controlled, double-blinded phase 2a safety and exploratory endpoint trial of LM11A-31 in 242 participants with mild to moderate AD with three arms: placebo, 200 mg LM11A-31 and 400 mg LM11A-31, administered twice daily by oral capsules. This trial met its primary endpoint of safety and tolerability. Within the prespecified secondary and exploratory outcome domains (structural magnetic resonance imaging, fluorodeoxyglucose positron-emission tomography and cerebrospinal fluid biomarkers), significant drug-placebo differences were found, consistent with the hypothesis that LM11A-31 slows progression of pathophysiological features of AD; no significant effect of active treatment was observed on cognitive tests. Together, these results suggest that targeting p75NTR with LM11A-31 warrants further investigation in larger-scale clinical trials of longer duration. EU Clinical Trials registration: 2015-005263-16 ; ClinicalTrials.gov registration: NCT03069014 .
Collapse
Grants
- R35 AG071476 NIA NIH HHS
- P30 AG072980 NIA NIH HHS
- SG-23-1038904 QC Alzheimer's Association
- 2022-00732 Vetenskapsrådet (Swedish Research Council)
- P20 GM109025 NIGMS NIH HHS
- R01 AG053798 NIA NIH HHS
- R35AG71476 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- ZEN-21-848495 Alzheimer's Association
- R01 AG051596 NIA NIH HHS
- P20GM109025 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- 453677 Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de Recherche en Santé du Canada)
- P20 AG068053 NIA NIH HHS
- 2017-00915 Vetenskapsrådet (Swedish Research Council)
- U01 AG024904 NIA NIH HHS
- R01AG053798 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R25 AG083721-01 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R25 AG083721 NIA NIH HHS
- Jonathan and Joshua Memorial Foundation Government of Ontario
- U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- State of Arizona
- Alzheimer’s Association
- the Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986 and #ALFGBG-965240), the Swedish Alzheimer Foundation (#AF-930351, #AF-939721 and #AF-968270), Hjärnfonden, Sweden (#FO2017-0243 and #ALZ2022-0006), La Fondation Recherche Alzheimer (FRA), Paris, France, the Kirsten and Freddy Johansen Foundation, Copenhagen, Denmark, and Familjen Rönströms Stiftelse, Stockholm, Sweden.
- U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- Alzheimer’s Drug Discovery Foundation (ADDF)
- Ted and Maria Quirk Endowment; Joy Chambers-Grundy Endowment.
- San Francisco VA Health Care System
- National Institutes of Aging (NIA AD Pilot Trial 1R01AG051596) PharmatrophiX (Menlo Park, California)
- Alzheimer’s Society of Canada (176677)
Collapse
Affiliation(s)
- Hayley R C Shanks
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
- Robarts Research Institute, Western University, London, Ontario, Canada.
- Western Institute for Neuroscience, Western University, London, Ontario, Canada.
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
- College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
- College of Health Solutions, Arizona State University, Downtown, Phoenix, AZ, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, Phoenix, AZ, USA
- College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
- Translational Genomics Research Institute, Phoenix, AZ, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| | - Stephen M Massa
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Anne Börjesson-Hanson
- Clinical Trials, Department of Aging, Karolinska University Hospital, Stockholm, Sweden
| | | | - Taylor W Schmitz
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
- Robarts Research Institute, Western University, London, Ontario, Canada.
- Western Institute for Neuroscience, Western University, London, Ontario, Canada.
| |
Collapse
|
4
|
Cummings JL, Gonzalez MI, Pritchard MC, May PC, Toledo-Sherman LM, Harris GA. The therapeutic landscape of tauopathies: challenges and prospects. Alzheimers Res Ther 2023; 15:168. [PMID: 37803386 PMCID: PMC10557207 DOI: 10.1186/s13195-023-01321-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
Tauopathies are a group of neurodegenerative disorders characterized by the aggregation of the microtubule-associated protein tau. Aggregates of misfolded tau protein are believed to be implicated in neuronal death, which leads to a range of symptoms including cognitive decline, behavioral change, dementia, and motor deficits. Currently, there are no effective treatments for tauopathies. There are four clinical candidates in phase III trials and 16 in phase II trials. While no effective treatments are currently approved, there is increasing evidence to suggest that various therapeutic approaches may slow the progression of tauopathies or improve symptoms. This review outlines the landscape of therapeutic drugs (indexed through February 28, 2023) that target tau pathology and describes drug candidates in clinical development as well as those in the discovery and preclinical phases. The review also contains information on notable therapeutic programs that are inactive or that have been discontinued from development.
Collapse
Affiliation(s)
- Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas (UNLV), Henderson, NV, USA
| | | | | | - Patrick C May
- ADvantage Neuroscience Consulting LLC, Fort Wayne, IN, USA
| | | | - Glenn A Harris
- Rainwater Charitable Foundation, 777 Main Street, Suite 2250, Fort Worth, TX, 76102, USA.
| |
Collapse
|
5
|
Oreshko AS, Rodnyy AY, Bazovkina DV, Naumenko VS. Effects of central administration of the human Tau protein on the Bdnf, Trkb, p75, Mapt, Bax and Bcl-2 genes expression in the mouse brain. Vavilovskii Zhurnal Genet Selektsii 2023; 27:342-348. [PMID: 37465194 PMCID: PMC10350857 DOI: 10.18699/vjgb-23-41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 07/20/2023] Open
Abstract
Alzheimer's disease is the most common form of dementia, affecting millions of people worldwide. Despite intensive work by many researchers, the mechanisms underlying Alzheimer's disease development have not yet been elucidated. Recently, more studies have been directed to the investigation of the processes leading to the formation of neurofibrillary tangles consisting of hyperphosphorylated microtubule-associated Tau proteins. Pathological aggregation of this protein leads to the development of neurodegeneration associated with impaired neurogenesis and apoptosis. In the present study, the effects of central administration of aggregating human Tau protein on the expression of the Bdnf, Ntrk2, Ngfr, Mapt, Bax and Bcl-2 genes in the brain of C57Bl/6J mice were explored. It was found that five days after administration of the protein into the fourth lateral ventricle, significant changes occurred in the expression of the genes involved in apoptosis and neurogenesis regulation, e. g., a notable decrease in the mRNA level of the gene encoding the most important neurotrophic factor BDNF (brain-derived neurotrophic factor) was observed in the frontal cortex which could play an important role in neurodegeneration caused by pathological Tau protein aggregation. Central administration of the Tau protein did not affect the expression of the Ntrk2, Ngfr, Mapt, Bax and Bcl-2 genes in the frontal cortex and hippocampus. Concurrently, a significant decrease in the expression of the Mapt gene encoding endogenous mouse Tau protein was found in the cerebellum. However, no changes in the level or phosphorylation of the endogenous Tau protein were observed. Thus, central administration of aggregating human Tau protein decreases the expression of the Bdnf gene in the frontal cortex and the Mapt gene encoding endogenous mouse Tau protein in the cerebellum of C57Bl/6J mice.
Collapse
Affiliation(s)
- A S Oreshko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A Ya Rodnyy
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D V Bazovkina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V S Naumenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
6
|
The Nerve Growth Factor Receptor (NGFR/p75 NTR): A Major Player in Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24043200. [PMID: 36834612 PMCID: PMC9965628 DOI: 10.3390/ijms24043200] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Alzheimer's disease (AD) represents the most prevalent type of dementia in elderly people, primarily characterized by brain accumulation of beta-amyloid (Aβ) peptides, derived from Amyloid Precursor Protein (APP), in the extracellular space (amyloid plaques) and intracellular deposits of the hyperphosphorylated form of the protein tau (p-tau; tangles or neurofibrillary aggregates). The Nerve growth factor receptor (NGFR/p75NTR) represents a low-affinity receptor for all known mammalians neurotrophins (i.e., proNGF, NGF, BDNF, NT-3 e NT-4/5) and it is involved in pathways that determine both survival and death of neurons. Interestingly, also Aβ peptides can blind to NGFR/p75NTR making it the "ideal" candidate in mediating Aβ-induced neuropathology. In addition to pathogenesis and neuropathology, several data indicated that NGFR/p75NTR could play a key role in AD also from a genetic perspective. Other studies suggested that NGFR/p75NTR could represent a good diagnostic tool, as well as a promising therapeutic target for AD. Here, we comprehensively summarize and review the current experimental evidence on this topic.
Collapse
|
7
|
Zhang H, Li X, Wang X, Xu J, Elefant F, Wang J. Cellular response to β-amyloid neurotoxicity in Alzheimer's disease and implications in new therapeutics. Animal Model Exp Med 2023; 6:3-9. [PMID: 36872303 PMCID: PMC9986234 DOI: 10.1002/ame2.12313] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/07/2023] [Indexed: 03/07/2023] Open
Abstract
β-Amyloid (Aβ) is a specific pathological hallmark of Alzheimer's disease (AD). Because of its neurotoxicity, AD patients exhibit multiple brain dysfunctions. Disease-modifying therapy (DMT) is the central concept in the development of AD therapeutics today, and most DMT drugs that are currently in clinical trials are anti-Aβ drugs, such as aducanumab and lecanemab. Therefore, understanding Aβ's neurotoxic mechanism is crucial for Aβ-targeted drug development. Despite its total length of only a few dozen amino acids, Aβ is incredibly diverse. In addition to the well-known Aβ1-42 , N-terminally truncated, glutaminyl cyclase (QC) catalyzed, and pyroglutamate-modified Aβ (pEAβ) is also highly amyloidogenic and far more cytotoxic. The extracellular monomeric Aβx-42 (x = 1-11) initiates the aggregation to form fibrils and plaques and causes many abnormal cellular responses through cell membrane receptors and receptor-coupled signal pathways. These signal cascades further influence many cellular metabolism-related processes, such as gene expression, cell cycle, and cell fate, and ultimately cause severe neural cell damage. However, endogenous cellular anti-Aβ defense processes always accompany the Aβ-induced microenvironment alterations. Aβ-cleaving endopeptidases, Aβ-degrading ubiquitin-proteasome system (UPS), and Aβ-engulfing glial cell immune responses are all essential self-defense mechanisms that we can leverage to develop new drugs. This review discusses some of the most recent advances in understanding Aβ-centric AD mechanisms and suggests prospects for promising anti-Aβ strategies.
Collapse
Affiliation(s)
- Haolin Zhang
- Faculty of Environment and LifeBeijing University of TechnologyBeijingChina
| | - Xianghua Li
- Faculty of Environment and LifeBeijing University of TechnologyBeijingChina
| | - Xiaoli Wang
- Faculty of Environment and LifeBeijing University of TechnologyBeijingChina
| | - Jiayu Xu
- Faculty of Environment and LifeBeijing University of TechnologyBeijingChina
| | - Felice Elefant
- Department of BiologyDrexel UniversityPhiladelphiaPennsylvaniaUSA
| | - Juan Wang
- Faculty of Environment and LifeBeijing University of TechnologyBeijingChina
| |
Collapse
|
8
|
Xiong LL, Chen L, Deng IB, Zhou XF, Wang TH. P75 neurotrophin receptor as a therapeutic target for drug development to treat neurological diseases. Eur J Neurosci 2022; 56:5299-5318. [PMID: 36017737 DOI: 10.1111/ejn.15810] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 12/14/2022]
Abstract
The interaction of neurotrophins with their receptors is involved in the pathogenesis and progression of various neurological diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, spinal cord injury and acute and chronic cerebral damage. The p75 neurotrophin receptor (p75NTR) plays a pivotal role in the development of neurological dysfunctions as a result of its high expression, abnormal processing and signalling. Therefore, p75NTR represents as a vital therapeutic target for the treatment of neurodegeneration, neuropsychiatric disorders and cerebrovascular insufficiency. This review summarizes the current research progress on the p75NTR signalling in neurological deficits. We also summarize the present therapeutic approaches by genetically and pharmacologically targeting p75NTR for the attenuation of pathological changes. Based on the evolving knowledge, the role of p75NTR in the regulation of tau hyperphosphorylation, Aβ metabolism, the degeneration of motor neurons and dopaminergic neurons has been discussed. Its position as a biomarker to evaluate the severity of diseases and as a druggable target for drug development has also been elucidated. Several prototype small molecule compounds were introduced to be crucial in neuronal survival and functional recovery via targeting p75NTR. These small molecule compounds represent desirable agents in attenuating neurodegeneration and cell death as they abolish activation-induced neurotoxicity of neurotrophins via modulating p75NTR signalling. More comprehensive and in-depth investigations on p75NTR-based drug development are required to shed light on effective treatment of numerous neurological disorders.
Collapse
Affiliation(s)
- Liu-Lin Xiong
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China.,Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Li Chen
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Isaac Bul Deng
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Xin-Fu Zhou
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Ting-Hua Wang
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Lu Q, Chen YH. TRPV4: En RhoA To a Cure? Bioessays 2022; 44:e2200071. [PMID: 35441721 DOI: 10.1002/bies.202200071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Qun Lu
- Department of Anatomy and Cell Biology, The Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA.,The Harriet and John Wooten Laboratory for Alzheimer's and Neurodegenerative Diseases Research, The Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology, The Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
10
|
Capsoni S, Cattaneo A. Getting Into the Brain: The Intranasal Approach to Enhance the Delivery of Nerve Growth Factor and Its Painless Derivative in Alzheimer’s Disease and Down Syndrome. Front Neurosci 2022; 16:773347. [PMID: 35360160 PMCID: PMC8961408 DOI: 10.3389/fnins.2022.773347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/10/2022] [Indexed: 01/04/2023] Open
Abstract
The neurotrophin Nerve Growth Factor (NGF) holds a great potential as a therapeutic candidate for the treatment of neurological diseases. However, its safe and effective delivery to the brain is limited by the fact that NGF needs to be selectively targeted to the brain, to avoid severe side effects such as pain and to bypass the blood brain barrier. In this perspective, we will summarize the different approaches that have been used, or are currently applied, to deliver NGF to the brain, during preclinical and clinical trials to develop NGF as a therapeutic drug for Alzheimer’s disease. We will focus on the intranasal delivery of NGF, an approach that is used to deliver proteins to the brain in a non-invasive, safe, and effective manner minimizing systemic exposure. We will also describe the main experimental facts related to the effective intranasal delivery of a mutant form of NGF [painless NGF, human nerve growth factor painless (hNGFp)] in mouse models of Alzheimer’s disease and compare it to other ways to deliver NGF to the brain. We will also report new data on the application of intranasal delivery of hNGFp in Down Syndrome mouse model. These new data extend the therapeutic potential of hNGFp for the treatment of the dementia that is progressively associated to Down Syndrome. In conclusion, we will show how this approach can be a promising strategy and a potential solution for other unmet medical needs of safely and effectively delivering this neuroprotective neurotrophin to the brain.
Collapse
Affiliation(s)
- Simona Capsoni
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
- Section of Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
- *Correspondence: Simona Capsoni,
| | - Antonino Cattaneo
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
- European Brain Research Institute–Fondazione Rita Levi-Montalcini, Rome, Italy
| |
Collapse
|
11
|
Fading memories in aging and neurodegeneration: Is p75 neurotrophin receptor a culprit? Ageing Res Rev 2022; 75:101567. [PMID: 35051645 DOI: 10.1016/j.arr.2022.101567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/12/2021] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
Aging and age-related neurodegenerative diseases have become one of the major concerns in modern times as cognitive abilities tend to decline when we get older. It is well known that the main cause of this age-related cognitive deficit is due to aberrant changes in cellular, molecular circuitry and signaling pathways underlying synaptic plasticity and neuronal connections. The p75 neurotrophin receptor (p75NTR) is one of the important mediators regulating the fate of the neurons in the nervous system. Its importance in neuronal apoptosis is well documented. However, the mechanisms involving the regulation of p75NTR in synaptic plasticity and cognitive function remain obscure, although cognitive impairment has been associated with a higher expression of p75NTR in neurons. In this review, we discuss the current understanding of how neurons are influenced by p75NTR function to maintain normal neuronal synaptic strength and connectivity, particularly to support learning and memory in the hippocampus. We then discuss the age-associated alterations in neurophysiological mechanisms of synaptic plasticity and cognitive function. Furthermore, we also describe current evidence that has begun to elucidate how p75NTR regulates synaptic changes in aging and age-related neurodegenerative diseases, focusing on the hippocampus. Elucidating the role that p75NTR signaling plays in regulating synaptic plasticity will contribute to a better understanding of cognitive processes and pathological conditions. This will in turn provide novel approaches to improve therapies for the treatment of neurological diseases in which p75NTR dysfunction has been demonstrated.
Collapse
|
12
|
Nguyen TVV, Crumpacker RH, Calderon KE, Garcia FG, Zbesko JC, Frye JB, Gonzalez S, Becktel DA, Yang T, Tavera-Garcia MA, Morrison HW, Schnellmann RG, Longo FM, Doyle KP. Post-Stroke Administration of the p75 Neurotrophin Receptor Modulator, LM11A-31, Attenuates Chronic Changes in Brain Metabolism, Increases Neurotransmitter Levels, and Improves Recovery. J Pharmacol Exp Ther 2022; 380:126-141. [PMID: 34893553 PMCID: PMC11048261 DOI: 10.1124/jpet.121.000711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/29/2021] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to test whether poststroke oral administration of a small molecule p75 neurotrophin receptor (p75NTR) modulator (LM11A-31) can augment neuronal survival and improve recovery in a mouse model of stroke. Mice were administered LM11A-31 for up to 12 weeks, beginning 1 week after stroke. Metabolomic analysis revealed that after 2 weeks of daily treatment, mice that received LM11A-31 were distinct from vehicle-treated mice by principal component analysis and had higher levels of serotonin, acetylcholine, and dopamine in their ipsilateral hemisphere. LM11A-31 treatment also improved redox homeostasis by restoring reduced glutathione. It also offset a stroke-induced reduction in glycolysis by increasing acetyl-CoA. There was no effect on cytokine levels in the infarct. At 13 weeks after stroke, adaptive immune cell infiltration in the infarct was unchanged in LM11A-31-treated mice, indicating that LM11A-31 does not alter the chronic inflammatory response to stroke at the site of the infarct. However, LM11A-31-treated mice had less brain atrophy, neurodegeneration, tau pathology, and microglial activation in other regions of the ipsilateral hemisphere. These findings correlated with improved recovery of motor function on a ladder test, improved sensorimotor and cognitive abilities on a nest construction test, and less impulsivity in an open field test. These data support small molecule modulation of the p75NTR for preserving neuronal health and function during stroke recovery. SIGNIFICANCE STATEMENT: The findings from this study introduce the p75 neurotrophin receptor as a novel small molecule target for promotion of stroke recovery. Given that LM11A-31 is in clinical trials as a potential therapy for Alzheimer's disease, it could be considered as a candidate for assessment in stroke or vascular dementia studies.
Collapse
Affiliation(s)
- Thuy-Vi V Nguyen
- Department of Immunobiology (T.-V.V.N., K.P.D., R.H.C., K.E.C., F.G.G., J.C.Z., J.B.F., D.A.B., M.A.T.-G.), Department of Neurology (T.-V.V.N., K.P.D., S.G.), College of Nursing (H.W.M.), Department of Pharmacology and Toxicology (R.G.S.), and Arizona Center on Aging (K.P.D.), University of Arizona, Tucson, Arizona; Department of Neurology and Neurologic Sciences, Stanford University, Stanford, California (T.Y., F.M.L.); and Southern Arizona Department of Veterans Affairs Health Care System, Tucson, Arizona (R.G.S.)
| | - Rachel H Crumpacker
- Department of Immunobiology (T.-V.V.N., K.P.D., R.H.C., K.E.C., F.G.G., J.C.Z., J.B.F., D.A.B., M.A.T.-G.), Department of Neurology (T.-V.V.N., K.P.D., S.G.), College of Nursing (H.W.M.), Department of Pharmacology and Toxicology (R.G.S.), and Arizona Center on Aging (K.P.D.), University of Arizona, Tucson, Arizona; Department of Neurology and Neurologic Sciences, Stanford University, Stanford, California (T.Y., F.M.L.); and Southern Arizona Department of Veterans Affairs Health Care System, Tucson, Arizona (R.G.S.)
| | - Kylie E Calderon
- Department of Immunobiology (T.-V.V.N., K.P.D., R.H.C., K.E.C., F.G.G., J.C.Z., J.B.F., D.A.B., M.A.T.-G.), Department of Neurology (T.-V.V.N., K.P.D., S.G.), College of Nursing (H.W.M.), Department of Pharmacology and Toxicology (R.G.S.), and Arizona Center on Aging (K.P.D.), University of Arizona, Tucson, Arizona; Department of Neurology and Neurologic Sciences, Stanford University, Stanford, California (T.Y., F.M.L.); and Southern Arizona Department of Veterans Affairs Health Care System, Tucson, Arizona (R.G.S.)
| | - Frankie G Garcia
- Department of Immunobiology (T.-V.V.N., K.P.D., R.H.C., K.E.C., F.G.G., J.C.Z., J.B.F., D.A.B., M.A.T.-G.), Department of Neurology (T.-V.V.N., K.P.D., S.G.), College of Nursing (H.W.M.), Department of Pharmacology and Toxicology (R.G.S.), and Arizona Center on Aging (K.P.D.), University of Arizona, Tucson, Arizona; Department of Neurology and Neurologic Sciences, Stanford University, Stanford, California (T.Y., F.M.L.); and Southern Arizona Department of Veterans Affairs Health Care System, Tucson, Arizona (R.G.S.)
| | - Jacob C Zbesko
- Department of Immunobiology (T.-V.V.N., K.P.D., R.H.C., K.E.C., F.G.G., J.C.Z., J.B.F., D.A.B., M.A.T.-G.), Department of Neurology (T.-V.V.N., K.P.D., S.G.), College of Nursing (H.W.M.), Department of Pharmacology and Toxicology (R.G.S.), and Arizona Center on Aging (K.P.D.), University of Arizona, Tucson, Arizona; Department of Neurology and Neurologic Sciences, Stanford University, Stanford, California (T.Y., F.M.L.); and Southern Arizona Department of Veterans Affairs Health Care System, Tucson, Arizona (R.G.S.)
| | - Jennifer B Frye
- Department of Immunobiology (T.-V.V.N., K.P.D., R.H.C., K.E.C., F.G.G., J.C.Z., J.B.F., D.A.B., M.A.T.-G.), Department of Neurology (T.-V.V.N., K.P.D., S.G.), College of Nursing (H.W.M.), Department of Pharmacology and Toxicology (R.G.S.), and Arizona Center on Aging (K.P.D.), University of Arizona, Tucson, Arizona; Department of Neurology and Neurologic Sciences, Stanford University, Stanford, California (T.Y., F.M.L.); and Southern Arizona Department of Veterans Affairs Health Care System, Tucson, Arizona (R.G.S.)
| | - Selena Gonzalez
- Department of Immunobiology (T.-V.V.N., K.P.D., R.H.C., K.E.C., F.G.G., J.C.Z., J.B.F., D.A.B., M.A.T.-G.), Department of Neurology (T.-V.V.N., K.P.D., S.G.), College of Nursing (H.W.M.), Department of Pharmacology and Toxicology (R.G.S.), and Arizona Center on Aging (K.P.D.), University of Arizona, Tucson, Arizona; Department of Neurology and Neurologic Sciences, Stanford University, Stanford, California (T.Y., F.M.L.); and Southern Arizona Department of Veterans Affairs Health Care System, Tucson, Arizona (R.G.S.)
| | - Danielle A Becktel
- Department of Immunobiology (T.-V.V.N., K.P.D., R.H.C., K.E.C., F.G.G., J.C.Z., J.B.F., D.A.B., M.A.T.-G.), Department of Neurology (T.-V.V.N., K.P.D., S.G.), College of Nursing (H.W.M.), Department of Pharmacology and Toxicology (R.G.S.), and Arizona Center on Aging (K.P.D.), University of Arizona, Tucson, Arizona; Department of Neurology and Neurologic Sciences, Stanford University, Stanford, California (T.Y., F.M.L.); and Southern Arizona Department of Veterans Affairs Health Care System, Tucson, Arizona (R.G.S.)
| | - Tao Yang
- Department of Immunobiology (T.-V.V.N., K.P.D., R.H.C., K.E.C., F.G.G., J.C.Z., J.B.F., D.A.B., M.A.T.-G.), Department of Neurology (T.-V.V.N., K.P.D., S.G.), College of Nursing (H.W.M.), Department of Pharmacology and Toxicology (R.G.S.), and Arizona Center on Aging (K.P.D.), University of Arizona, Tucson, Arizona; Department of Neurology and Neurologic Sciences, Stanford University, Stanford, California (T.Y., F.M.L.); and Southern Arizona Department of Veterans Affairs Health Care System, Tucson, Arizona (R.G.S.)
| | - Marco A Tavera-Garcia
- Department of Immunobiology (T.-V.V.N., K.P.D., R.H.C., K.E.C., F.G.G., J.C.Z., J.B.F., D.A.B., M.A.T.-G.), Department of Neurology (T.-V.V.N., K.P.D., S.G.), College of Nursing (H.W.M.), Department of Pharmacology and Toxicology (R.G.S.), and Arizona Center on Aging (K.P.D.), University of Arizona, Tucson, Arizona; Department of Neurology and Neurologic Sciences, Stanford University, Stanford, California (T.Y., F.M.L.); and Southern Arizona Department of Veterans Affairs Health Care System, Tucson, Arizona (R.G.S.)
| | - Helena W Morrison
- Department of Immunobiology (T.-V.V.N., K.P.D., R.H.C., K.E.C., F.G.G., J.C.Z., J.B.F., D.A.B., M.A.T.-G.), Department of Neurology (T.-V.V.N., K.P.D., S.G.), College of Nursing (H.W.M.), Department of Pharmacology and Toxicology (R.G.S.), and Arizona Center on Aging (K.P.D.), University of Arizona, Tucson, Arizona; Department of Neurology and Neurologic Sciences, Stanford University, Stanford, California (T.Y., F.M.L.); and Southern Arizona Department of Veterans Affairs Health Care System, Tucson, Arizona (R.G.S.)
| | - Rick G Schnellmann
- Department of Immunobiology (T.-V.V.N., K.P.D., R.H.C., K.E.C., F.G.G., J.C.Z., J.B.F., D.A.B., M.A.T.-G.), Department of Neurology (T.-V.V.N., K.P.D., S.G.), College of Nursing (H.W.M.), Department of Pharmacology and Toxicology (R.G.S.), and Arizona Center on Aging (K.P.D.), University of Arizona, Tucson, Arizona; Department of Neurology and Neurologic Sciences, Stanford University, Stanford, California (T.Y., F.M.L.); and Southern Arizona Department of Veterans Affairs Health Care System, Tucson, Arizona (R.G.S.)
| | - Frank M Longo
- Department of Immunobiology (T.-V.V.N., K.P.D., R.H.C., K.E.C., F.G.G., J.C.Z., J.B.F., D.A.B., M.A.T.-G.), Department of Neurology (T.-V.V.N., K.P.D., S.G.), College of Nursing (H.W.M.), Department of Pharmacology and Toxicology (R.G.S.), and Arizona Center on Aging (K.P.D.), University of Arizona, Tucson, Arizona; Department of Neurology and Neurologic Sciences, Stanford University, Stanford, California (T.Y., F.M.L.); and Southern Arizona Department of Veterans Affairs Health Care System, Tucson, Arizona (R.G.S.)
| | - Kristian P Doyle
- Department of Immunobiology (T.-V.V.N., K.P.D., R.H.C., K.E.C., F.G.G., J.C.Z., J.B.F., D.A.B., M.A.T.-G.), Department of Neurology (T.-V.V.N., K.P.D., S.G.), College of Nursing (H.W.M.), Department of Pharmacology and Toxicology (R.G.S.), and Arizona Center on Aging (K.P.D.), University of Arizona, Tucson, Arizona; Department of Neurology and Neurologic Sciences, Stanford University, Stanford, California (T.Y., F.M.L.); and Southern Arizona Department of Veterans Affairs Health Care System, Tucson, Arizona (R.G.S.)
| |
Collapse
|
13
|
Cade S, Zhou XF, Bobrovskaya L. The role of brain-derived neurotrophic factor and the neurotrophin receptor p75NTR in age-related brain atrophy and the transition to Alzheimer's disease. Rev Neurosci 2022; 33:515-529. [PMID: 34982865 DOI: 10.1515/revneuro-2021-0111] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/11/2021] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease is a neurodegenerative condition that is potentially mediated by synaptic dysfunction before the onset of cognitive impairments. The disease mostly affects elderly people and there is currently no therapeutic which halts its progression. One therapeutic strategy for Alzheimer's disease is to regenerate lost synapses by targeting mechanisms involved in synaptic plasticity. This strategy has led to promising drug candidates in clinical trials, but further progress needs to be made. An unresolved problem of Alzheimer's disease is to identify the molecular mechanisms that render the aged brain susceptible to synaptic dysfunction. Understanding this susceptibility may identify drug targets which could halt, or even reverse, the disease's progression. Brain derived neurotrophic factor is a neurotrophin expressed in the brain previously implicated in Alzheimer's disease due to its involvement in synaptic plasticity. Low levels of the protein increase susceptibility to the disease and post-mortem studies consistently show reductions in its expression. A desirable therapeutic approach for Alzheimer's disease is to stimulate the expression of brain derived neurotrophic factor and potentially regenerate lost synapses. However, synthesis and secretion of the protein are regulated by complex activity-dependent mechanisms within neurons, which makes this approach challenging. Moreover, the protein is synthesised as a precursor which exerts the opposite effect of its mature form through the neurotrophin receptor p75NTR. This review will evaluate current evidence on how age-related alterations in the synthesis, processing and signalling of brain derived neurotrophic factor may increase the risk of Alzheimer's disease.
Collapse
Affiliation(s)
- Shaun Cade
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Xin-Fu Zhou
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
14
|
Mahalakshmi AM, Ray B, Tuladhar S, Hediyal TA, Raj P, Rathipriya AG, Qoronfleh MW, Essa MM, Chidambaram SB. Impact of Pharmacological and Non-Pharmacological Modulators on Dendritic Spines Structure and Functions in Brain. Cells 2021; 10:3405. [PMID: 34943913 PMCID: PMC8699406 DOI: 10.3390/cells10123405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic spines are small, thin, hair-like protrusions found on the dendritic processes of neurons. They serve as independent compartments providing large amplitudes of Ca2+ signals to achieve synaptic plasticity, provide sites for newer synapses, facilitate learning and memory. One of the common and severe complication of neurodegenerative disease is cognitive impairment, which is said to be closely associated with spine pathologies viz., decreased in spine density, spine length, spine volume, spine size etc. Many treatments targeting neurological diseases have shown to improve the spine structure and distribution. However, concise data on the various modulators of dendritic spines are imperative and a need of the hour. Hence, in this review we made an attempt to consolidate the effects of various pharmacological (cholinergic, glutamatergic, GABAergic, serotonergic, adrenergic, and dopaminergic agents) and non-pharmacological modulators (dietary interventions, enriched environment, yoga and meditation) on dendritic spines structure and functions. These data suggest that both the pharmacological and non-pharmacological modulators produced significant improvement in dendritic spine structure and functions and in turn reversing the pathologies underlying neurodegeneration. Intriguingly, the non-pharmacological approaches have shown to improve intellectual performances both in preclinical and clinical platforms, but still more technology-based evidence needs to be studied. Thus, we conclude that a combination of pharmacological and non-pharmacological intervention may restore cognitive performance synergistically via improving dendritic spine number and functions in various neurological disorders.
Collapse
Affiliation(s)
- Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
- SIG-Brain, Behaviour and Cognitive Neurosciences Research (BBRC), JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Sunanda Tuladhar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Praveen Raj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
| | | | - M. Walid Qoronfleh
- Q3CG Research Institute (QRI), Research and Policy Division, 7227 Rachel Drive, Ypsilanti, MI 48917, USA;
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat 123, Oman
- Biomedical Sciences Department, University of Pacific, Sacramento, CA 95211, USA
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
- SIG-Brain, Behaviour and Cognitive Neurosciences Research (BBRC), JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| |
Collapse
|
15
|
Guglietti B, Sivasankar S, Mustafa S, Corrigan F, Collins-Praino LE. Fyn Kinase Activity and Its Role in Neurodegenerative Disease Pathology: a Potential Universal Target? Mol Neurobiol 2021; 58:5986-6005. [PMID: 34432266 DOI: 10.1007/s12035-021-02518-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
Fyn is a non-receptor tyrosine kinase belonging to the Src family of kinases (SFKs) which has been implicated in several integral functions throughout the central nervous system (CNS), including myelination and synaptic transmission. More recently, Fyn dysfunction has been associated with pathological processes observed in neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD) and Parkinson's disease (PD). Neurodegenerative diseases are amongst the leading cause of death and disability worldwide and, due to the ageing population, prevalence is predicted to rise in the coming years. Symptoms across neurodegenerative diseases are both debilitating and degenerative in nature and, concerningly, there are currently no disease-modifying therapies to prevent their progression. As such, it is important to identify potential new therapeutic targets. This review will outline the role of Fyn in normal/homeostatic processes, as well as degenerative/pathological mechanisms associated with neurodegenerative diseases, such as demyelination, pathological protein aggregation, neuroinflammation and cognitive dysfunction.
Collapse
Affiliation(s)
- Bianca Guglietti
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia
| | - Srisankavi Sivasankar
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia
| | - Sanam Mustafa
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia
| | - Frances Corrigan
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia
| | - Lyndsey E Collins-Praino
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia. .,ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
16
|
In vivo functions of p75 NTR: challenges and opportunities for an emerging therapeutic target. Trends Pharmacol Sci 2021; 42:772-788. [PMID: 34334250 DOI: 10.1016/j.tips.2021.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/31/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022]
Abstract
The p75 neurotrophin receptor (p75NTR) functions at the molecular nexus of cell death, survival, and differentiation. In addition to its contribution to neurodegenerative diseases and nervous system injuries, recent studies have revealed unanticipated roles of p75NTR in liver repair, fibrinolysis, lung fibrosis, muscle regeneration, and metabolism. Linking these various p75NTR functions more precisely to specific mechanisms marks p75NTR as an emerging candidate for therapeutic intervention in a wide range of disorders. Indeed, small molecule inhibitors of p75NTR binding to neurotrophins have shown efficacy in models of Alzheimer's disease (AD) and neurodegeneration. Here, we outline recent advances in understanding p75NTR pleiotropic functions in vivo, and propose an integrated view of p75NTR and its challenges and opportunities as a pharmacological target.
Collapse
|
17
|
Guiler W, Koehler A, Boykin C, Lu Q. Pharmacological Modulators of Small GTPases of Rho Family in Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:661612. [PMID: 34054432 PMCID: PMC8149604 DOI: 10.3389/fncel.2021.661612] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
Classical Rho GTPases, including RhoA, Rac1, and Cdc42, are members of the Ras small GTPase superfamily and play essential roles in a variety of cellular functions. Rho GTPase signaling can be turned on and off by specific GEFs and GAPs, respectively. These features empower Rho GTPases and their upstream and downstream modulators as targets for scientific research and therapeutic intervention. Specifically, significant therapeutic potential exists for targeting Rho GTPases in neurodegenerative diseases due to their widespread cellular activity and alterations in neural tissues. This study will explore the roles of Rho GTPases in neurodegenerative diseases with focus on the applications of pharmacological modulators in recent discoveries. There have been exciting developments of small molecules, nonsteroidal anti-inflammatory drugs (NSAIDs), and natural products and toxins for each classical Rho GTPase category. A brief overview of each category followed by examples in their applications will be provided. The literature on their roles in various diseases [e.g., Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), Frontotemporal dementia (FTD), and Multiple sclerosis (MS)] highlights the unique and broad implications targeting Rho GTPases for potential therapeutic intervention. Clearly, there is increasing knowledge of therapeutic promise from the discovery of pharmacological modulators of Rho GTPases for managing and treating these conditions. The progress is also accompanied by the recognition of complex Rho GTPase modulation where targeting its signaling can improve some aspects of pathogenesis while exacerbating others in the same disease model. Future directions should emphasize the importance of elucidating how different Rho GTPases work in concert and how they produce such widespread yet different cellular responses during neurodegenerative disease progression.
Collapse
Affiliation(s)
| | | | | | - Qun Lu
- Department of Anatomy and Cell Biology, The Harriet and John Wooten Laboratory for Alzheimer’s and Neurogenerative Diseases Research, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|