1
|
Wada E, Ito C, Shinohara M, Handa S, Maetani M, Yasugi M, Miyake M, Sakamoto T, Yazawa A, Kamitani S. Prunin Laurate Derived from Natural Substances Shows Antibacterial Activity against the Periodontal Pathogen Porphyromonas gingivalis. Foods 2024; 13:1917. [PMID: 38928857 PMCID: PMC11202431 DOI: 10.3390/foods13121917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Periodontal disease is an inflammatory disease caused by infection with periodontopathogenic bacteria. Oral care is essential to prevent and control periodontal disease, which affects oral and systemic health. However, many oral hygiene products currently on the market were developed as disinfectants, and their intense irritation makes their use difficult for young children and older people. This study investigated the antibacterial effects of prunin laurate (Pru-C12) and its analogs on periodontopathogenic bacteria, Porphyromonas gingivalis (P. gingivalis). Pru-C12 and its analogs inhibited in vitro bacterial growth at more than 10 μM and biofilm formation at 50 µM. Among its analogs, only Pru-C12 showed no cytotoxicity at 100 µM. Three of the most potent inhibitors also inhibited the formation of biofilms. Furthermore, Pru-C12 inhibited alveolar bone resorption in a mouse experimental periodontitis model by P. gingivalis infection. These findings may be helpful in the development of oral hygiene products for the prevention and control of periodontal disease and related disorders.
Collapse
Affiliation(s)
- Erika Wada
- Nutrition Support Course, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino 583-8555, Osaka, Japan (A.Y.)
| | - Chiharu Ito
- Division of Clinical Nutrition, School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino 583-8555, Osaka, Japan (M.M.)
| | - Mai Shinohara
- Nutrition Support Course, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino 583-8555, Osaka, Japan (A.Y.)
| | - Satoshi Handa
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Osaka, Japan; (S.H.); (T.S.)
| | - Miki Maetani
- Division of Clinical Nutrition, School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino 583-8555, Osaka, Japan (M.M.)
| | - Mayo Yasugi
- Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano 598-8531, Osaka, Japan; (M.Y.); (M.M.)
| | - Masami Miyake
- Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano 598-8531, Osaka, Japan; (M.Y.); (M.M.)
| | - Tatsuji Sakamoto
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Osaka, Japan; (S.H.); (T.S.)
| | - Ayaka Yazawa
- Nutrition Support Course, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino 583-8555, Osaka, Japan (A.Y.)
- Division of Clinical Nutrition, School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino 583-8555, Osaka, Japan (M.M.)
- Department of Nutrition, Graduate School of Human Life & Ecology, Osaka Metropolitan University, Habikino 583-8555, Osaka, Japan
| | - Shigeki Kamitani
- Nutrition Support Course, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino 583-8555, Osaka, Japan (A.Y.)
- Division of Clinical Nutrition, School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino 583-8555, Osaka, Japan (M.M.)
- Department of Nutrition, Graduate School of Human Life & Ecology, Osaka Metropolitan University, Habikino 583-8555, Osaka, Japan
| |
Collapse
|
2
|
Sehrawat R, Pasrija R, Rathee P, Kumari D, Khatkar A, Küpeli Akkol E, Sobarzo-Sánchez E. Hybrid Caffeic Acid-Based DHFR Inhibitors as Novel Antimicrobial and Anticancer Agents. Antibiotics (Basel) 2024; 13:479. [PMID: 38927146 PMCID: PMC11200944 DOI: 10.3390/antibiotics13060479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
A novel series of 1,2,4-triazole analogues of caffeic acid was designed, synthesized, characterized, and assessed for their capacity to inhibit DHFR, as well as their anticancer and antimicrobial properties. A molecular docking analysis was conducted on DHFR, utilizing PDB IDs 1U72 and 2W9S, aiming to design anticancer and antimicrobial drugs, respectively. Among all the synthesized derivatives, compound CTh7 demonstrated the highest potency as a DHFR inhibitor, with an IC50 value of 0.15 μM. Additionally, it exhibited significant cytotoxic properties, with an IC50 value of 8.53 µM. The molecular docking analysis of the CTh7 compound revealed that it forms strong interactions with key residues of homo sapiens DHFR such as Glu30, Phe34, Tyr121, Ile16, Val115, and Phe31 within the target protein binding site and displayed excellent docking scores and binding energy (-9.9; -70.38 kcal/mol). Additionally, synthesized compounds were screened for antimicrobial properties, revealing significant antimicrobial potential against bacterial strains and moderate effects against fungal strains. Specifically, compound CTh3 exhibited notable antibacterial efficacy against Staphylococcus aureus (MIC = 5 µM). Similarly, compound CTh4 demonstrated significant antibacterial activity against both Escherichia coli and Pseudomonas aeruginosa, with MIC values of 5 µM for each. A docking analysis of the most active antimicrobial compound CTh3 revealed that it forms hydrogen bonds with Thr121 and Asn18, a π-cation bond with Phe92, and a salt bridge with the polar residue Asp27.
Collapse
Affiliation(s)
- Renu Sehrawat
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India;
| | - Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak 124001, India; (R.P.); (D.K.)
| | - Priyanka Rathee
- Faculty of Pharmaceutical Sciences, Baba Mastnath University, Rohtak 124021, India;
| | - Deepika Kumari
- Department of Biochemistry, Maharshi Dayanand University, Rohtak 124001, India; (R.P.); (D.K.)
| | - Anurag Khatkar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India;
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Türkiye
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 417, Santiago 8330507, Chile;
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
3
|
Kırcı D, Demirci F, Demirci B. Microbial Transformation of Hesperidin and Biological Evaluation. ACS OMEGA 2023; 8:42610-42621. [PMID: 38024700 PMCID: PMC10652256 DOI: 10.1021/acsomega.3c05334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
The main aim of the study was the biotransformation evaluation of hesperidin for functionalization by 25 different nonhuman pathogenic microorganisms. As a result, four metabolites were identified and characterized. The structure of pinocembrin and naringenin from the microbial transformation of hesperidin was determined initially with LC/MS-MS. The metabolites eriodictyol and hesperetin were isolated, and their molecular structure was determined by NMR and MS. Pinocembrin, eriodictyol, and naringenin were characterized as new hesperidin microbial transformation metabolites, to the best of our knowledge. In order to evaluate the bioactivity, in vitro 5-lipoxygenase (5-LOX) enzyme inhibition, antioxidant, antimicrobial, and acute toxicity evaluations using the brine shrimp assay of hesperidin and its metabolites were performed comparatively. According to antioxidant and anti-inflammatory activity results, hesperetin metabolite was more active than naringenin and hesperidin. The antimicrobial activity of hesperetin and naringenin against the human pathogenic Staphylococcus aureus strain was relatively higher when compared with the substrate hesperidin. In line with this result, biofilm activity of hesperetin and naringenin against S. aureus with combination studies using biofilm formation methods was carried out. The checkerboard combination method was utilized for biofilm layering, also for the first time in the present study. As an initial result, it was observed that hesperidin and naringenin exerted a synergistic activity with a fractional inhibitory concentration index (FICI) value of 1.063. Considering the bioactivity of hesperidin, hesperetin, and naringenin used as substrates are relatively nontoxic. The microbial and enzymatic biotransformation of natural products such as hesperetin and its new bioactive metabolites still have pharmacological potential, which needs further experimentation at the molecular level..
Collapse
Affiliation(s)
- Damla Kırcı
- Department
of Pharmacognosy, Faculty of Pharmacy, Selçuk
University, Konya 42150, Türkiye
| | - Fatih Demirci
- Department
of Pharmacognosy, Faculty of Pharmacy, Anadolu
University, Eskişehir 26470, Türkiye
- Faculty
of Pharmacy, Eastern Mediterranean University, N. Cyprus, Via Mersin, Famagusta 99628, Türkiye
| | - Betül Demirci
- Department
of Pharmacognosy, Faculty of Pharmacy, Anadolu
University, Eskişehir 26470, Türkiye
| |
Collapse
|
4
|
Poudineh M, Ghotbi T, Azizi F, Karami N, Zolfaghari Z, Gheisari F, Hormozi M, Poudineh S. Neuropharmaceutical Properties of Naringin Against Alzheimer's and Parkinson's Diseases: Naringin Protection Against AD and PD. Galen Med J 2022; 11:e2337. [PMID: 36698693 PMCID: PMC9838113 DOI: 10.31661/gmj.v11i.2337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 11/06/2022] Open
Abstract
Neurological complications are considered the leading cause of disability and the second cause of death worldwide. Although the most common neurological disorders affecting a large population are Alzheimer's (AD) and Parkinson's diseases (PD), no definitive treatment has been propounded in the clinic. As in recent years, special attention has been paid to medicinal herbal products as one of the ways to meet the challenges of treating diseases. This review study aimed to introduce the naringin neuroprotective effects as an abundant flavonoid in grapes and citrus fruits on the most common neurological disorders, including AD and PD. For this purpose, the specified keywords were searched in PubMed, Web of Science, Scopus, Embase, and Google Scholar, and the results were entered into the study after a concise overview. The findings show naringin can confront neurological disorders through several mechanisms such as modulating stress response pathways, preventing apoptosis, oxidative stress, and neuroinflammation, excessive chelating amounts of metal ions, thereby improving cognitive impairment and memory loss induced by neurological disorders. However, further studies, particularly on human, are critical for the final confirmation of obtained findings. [GMJ.2022;11:e2337].
Collapse
Affiliation(s)
| | - Tahere Ghotbi
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Science, Shiraz, Iran
| | - Farnoush Azizi
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Science, Shiraz, Iran
| | - Nooshin Karami
- Department of Clinical Psychology, Shiraz University of Education and Psychology, Shiraz, Iran
| | - Zahra Zolfaghari
- Department of E Learning in Medical Sciences, Virtual Faculty of Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Hormozi
- Department of Neurodegenerative Diseases and Hertie, Institute for Clinical Brain Research, University of Tuebingen, 72076, Tuebingen, Germany
| | - Sahar Poudineh
- School of Medicine, Mashhad Azad University, Mashhad, Iran
| |
Collapse
|
5
|
Mochizuki H, Suyama S, Cha JY, Ho PS, Shimoi A. Optimization of a histamine-induced allergic conjunctivitis model in Guinea pigs. J Pharmacol Toxicol Methods 2021; 113:107133. [PMID: 34798284 DOI: 10.1016/j.vascn.2021.107133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/29/2022]
Abstract
Allergic conjunctivitis is one of the most common immune diseases in the field of ophthalmology. The number of patients suffering from allergic conjunctivitis has been increasing, and there is still a strong need for development of therapeutic agents for this disease. In drug development, the utmost important point to improve the success probability is to accurately single out good compounds in the early stage of drug development. Therefore, drug efficacy evaluations in the nonclinical stage should be conducted with high reliability and accuracy. However, there are no literatures investigating the preparation and evaluation methods of animal models of conjunctivitis in details nor the standardized criteria. In this study, we verified the reproducibility of an animal model in the previous report and made improvements in test methods focusing on a guinea pig model of histamine-induced allergic conjunctivitis. Furthermore, the drug efficacy evaluation was conducted using a commercially available antihistamine drug, levocabastine hydrochloride, to judge the suitability of the improved model. As a result, the dose level of histamine needed to be increased to use the existing model for drug efficacy evaluation, but allergic-like symptoms were induced very easily and stably in this model. For observations of symptoms of conjunctivitis, we eliminated ambiguity of evaluation by adopting the Draize scale and ensured a higher objectivity on the evaluation method. The drug efficacy evaluation of levocabastine hydrochloride in the prepared model revealed that drug efficacy of the antihistamine drug was captured according to the standardized test method and highly-reproducible results were obtained.
Collapse
Affiliation(s)
- Hidemi Mochizuki
- Ina Research Inc., 2148-188 Nishiminowa, Ina, Nagano 399-4501, Japan.
| | - Susumu Suyama
- Ina Research Inc., 2148-188 Nishiminowa, Ina, Nagano 399-4501, Japan.
| | - Joo Young Cha
- JW Pharmaceutical Corporation, 2477, Nambusunhwan-ro, Seocho-gu, Seoul 137-864, Republic of Korea.
| | - Pil-Su Ho
- JW Pharmaceutical Corporation, 2477, Nambusunhwan-ro, Seocho-gu, Seoul 137-864, Republic of Korea.
| | - Akihito Shimoi
- Ina Research Inc., 2148-188 Nishiminowa, Ina, Nagano 399-4501, Japan.
| |
Collapse
|