1
|
Chen S, Sun X, Tian X, Jiang W, Dong X, Li L. Influence of ammonia nitrogen management strategies on microbial communities in biofloc-based aquaculture systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166159. [PMID: 37572910 DOI: 10.1016/j.scitotenv.2023.166159] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Controlling ammonia nitrogen is very important in intensive aquaculture. This study evaluated how different management strategies, i.e., chemoautotrophic (control), heterotrophic bacterial enhancement using carbon in glucose or polyhydroxy butyrate-hydroxy valerate (PHBV), and mature biofloc application, affect water quality and microbial community structure and composition. The management strategies were examined during the domestication and fish culture stages. In the domestication stage, the average NO2--N concentration, pH, and DO in the glucose-added groups were significantly lower than those in the control and PHBV groups. All water quality parameters differed significantly among treatment groups in the culture stage. Carbon additions decreased both bacterial richness and diversity in the fish culture stage. Both principal coordinate analysis and hierarchical cluster analysis grouped the 33 bacteria community samples from the two stages into four clusters, which were closely related to management strategy. The dominant taxa of the clusters were identified using linear discriminant analysis effect size (LEfSe). The biomarkers of Cluster I included Marinomonas, Photobacterium, and Vibrio. Porticoccus and Clade-1a were identified as the biomarkers of Cluster II. Marivia, Leucothrix, and Phaeodactylibacter were identified as the biomarkers of Cluster IV. The Cluster I biomarkers were positively correlated with NO2--N, while those of Cluster IV were positively correlated with NO3--N. The redundancy analysis showed that the bacterial communities and biomarkers were influenced by water quality parameters. Quantitative real-time PCR analysis revealed significant differences in the abundances of the amoA and nxrB genes among treatments and between the two stages. The abundance of the amoA gene was higher in the control group than in the carton-added treatments at the ends of both stages. This study provides an important theoretical basis for the selection of efficient ammonia nitrogen control strategies in aquaculture systems.
Collapse
Affiliation(s)
- Shengjiang Chen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Xueqian Sun
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Xiangli Tian
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Wenwen Jiang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Xuan Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China.
| | - Li Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
2
|
Márton Z, Szabó B, Vad CF, Pálffy K, Horváth Z. Environmental changes associated with drying climate are expected to affect functional groups of pro- and microeukaryotes differently in temporary saline waters. Sci Rep 2023; 13:3243. [PMID: 36828901 PMCID: PMC9957990 DOI: 10.1038/s41598-023-30385-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Temporary ponds are among the most sensitive aquatic habitats to climate change. Their microbial communities have crucial roles in food webs and biogeochemical cycling, yet how their communities are assembled along environmental gradients is still understudied. This study aimed to reveal the environmental drivers of diversity (OTU-based richness, evenness, and phylogenetic diversity) and community composition from a network of saline temporary ponds, soda pans, in two consecutive spring seasons characterized by contrasting weather conditions. We used DNA-based molecular methods to investigate microbial community composition. We tested the effect of environmental variables on the diversity of prokaryotic (Bacteria, Cyanobacteria) and microeukaryotic functional groups (ciliates, heterotrophic flagellates and nanoflagellates, fungi, phytoplankton) within and across the years. Conductivity and the concentration of total suspended solids and phosphorus were the most important environmental variables affecting diversity patterns in all functional groups. Environmental conditions were harsher and they also had a stronger impact on community composition in the dry spring. Our results imply that these conditions, which are becoming more frequent with climate change, have a negative effect on microbial diversity in temporary saline ponds. This eventually might translate into community-level shifts across trophic groups with changing local conditions with implications for ecosystem functioning.
Collapse
Affiliation(s)
- Zsuzsanna Márton
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, 1113, Budapest, Hungary.
- National Multidisciplinary Laboratory for Climate Change, Centre for Ecological Research, Karolina út 29, 1113, Budapest, Hungary.
- Doctoral School of Environmental Sciences, ELTE Eötvös Loránd University, Budapest, Hungary.
| | - Beáta Szabó
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, 1113, Budapest, Hungary
- National Multidisciplinary Laboratory for Climate Change, Centre for Ecological Research, Karolina út 29, 1113, Budapest, Hungary
| | - Csaba F Vad
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, 1113, Budapest, Hungary
- National Multidisciplinary Laboratory for Climate Change, Centre for Ecological Research, Karolina út 29, 1113, Budapest, Hungary
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Charles Deberiotstraat 32, 3000, Leuven, Belgium
| | - Károly Pálffy
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, 1113, Budapest, Hungary
- National Multidisciplinary Laboratory for Climate Change, Centre for Ecological Research, Karolina út 29, 1113, Budapest, Hungary
| | - Zsófia Horváth
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, 1113, Budapest, Hungary
- National Multidisciplinary Laboratory for Climate Change, Centre for Ecological Research, Karolina út 29, 1113, Budapest, Hungary
- ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1113, Hungary
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Charles Deberiotstraat 32, 3000, Leuven, Belgium
| |
Collapse
|
3
|
Zhang X, Jin C, Gu B, Ji J, Zhao Y, Gao M, She Z. Effect of external carbon addition and enrofloxacin on the denitrification and microbial community of sequencing batch membrane reactor treating synthetic mariculture wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116155. [PMID: 36116256 DOI: 10.1016/j.jenvman.2022.116155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/08/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The effect of sequencing batch membrane bioreactor (SMBR) on external carbon addition and enrofloxacin was investigated to treat synthetic mariculture wastewater. Anoxic/anaerobic and low COD/TN can improve the ammonia oxidation of the system, and the NH4+-N removal efficiency above 99%. External carbon was added and an anoxic environment was set to provide a suitable environment for denitrifying bacteria. When the external carbon source was 50-207 mg/L, the TN removal efficiency (31.82%-37.73%) and the COD of the effluent (28.85-36.58 mg/L) had little change. The partition resistance model showed that cake deposition resistance (RC,irr) and irreversible resistance (RPB) were the main components. And with the increase in cleaning times, the fouling rate of membrane components accelerated. Enrofloxacin can promote the TN removal efficiency (45.66%-93.74%) and had a significant effect on TM7a, Cohaesibacter, Vibrio and Phaeobacter.
Collapse
Affiliation(s)
- Xue Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Baiming Gu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Junyuan Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
4
|
Corcoran AA, Ohan J, Hanschen ER, Granite A, Martinez H, Holguin F, Hovde BT, Starkenburg SR. Scale-dependent enhancement of productivity and stability in xenic Nannochloropsis cultures. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|