1
|
Franca CM, Lima Verde ME, Silva-Sousa AC, Mansoorifar A, Athirasala A, Subbiah R, Tahayeri A, Sousa M, Fraga MA, Visalakshan RM, Doe A, Beadle K, Finley M, Dimitriadis E, Bays J, Uroz M, Yamada KM, Chen C, Bertassoni LE. Perivascular cells function as key mediators of mechanical and structural changes in vascular capillaries. SCIENCE ADVANCES 2025; 11:eadp3789. [PMID: 39792671 PMCID: PMC11721577 DOI: 10.1126/sciadv.adp3789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025]
Abstract
A hallmark of chronic and inflammatory diseases is the formation of a fibrotic and stiff extracellular matrix (ECM), typically associated with abnormal, leaky microvascular capillaries. Mechanisms explaining how the microvasculature responds to ECM alterations remain unknown. Here, we used a microphysiological model of capillaries on a chip mimicking the characteristics of healthy or fibrotic collagen to test the hypothesis that perivascular cells mediate the response of vascular capillaries to mechanical and structural changes in the human ECM. Capillaries engineered in altered fibrotic collagen had abnormal migration of perivascular cells, reduced pericyte differentiation, increased leakage, and higher regulation of inflammatory/remodeling genes, all regulated via NOTCH3, a known mediator of endothelial-perivascular cell communication. Capillaries engineered either with endothelial cells alone or with perivascular cells silenced for NOTCH3 expression showed a minimal response to ECM alterations. These findings reveal a previously unknown mechanism of vascular response to changes in the ECM in health and disease.
Collapse
Affiliation(s)
- Cristiane M. Franca
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
| | - Maria Elisa Lima Verde
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
| | - Alice Correa Silva-Sousa
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
| | - Amin Mansoorifar
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
| | - Avathamsa Athirasala
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
| | - Ramesh Subbiah
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
| | - Anthony Tahayeri
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
| | - Mauricio Sousa
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
| | - May Anny Fraga
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
- Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, Sao Paulo, SP 13414-230, Brazil
| | - Rahul M. Visalakshan
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
| | - Aaron Doe
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
| | - Keith Beadle
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
| | - McKenna Finley
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
| | - Emilios Dimitriadis
- Trans-NIH Shared Resource for Biomedical Engineering and Physical Science, NIBIB, NIH, Bethesda, MD 20892, USA
| | - Jennifer Bays
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Marina Uroz
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | | | - Christopher Chen
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Luiz E. Bertassoni
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
- Division of Oncological Sciences, School of Medicine, OHSU, Portland, OR 97201, USA
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97201, USA
| |
Collapse
|
2
|
Guo X, Li J, Wu Y, Xu L. Recent advancements in hydrogels as novel tissue engineering scaffolds for dental pulp regeneration. Int J Biol Macromol 2024; 264:130708. [PMID: 38460622 DOI: 10.1016/j.ijbiomac.2024.130708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Although conventional root canal treatment offers an effective therapeutic solution, it negatively affects the viability of the affected tooth. In recent years, pulp regeneration technology has emerged as a novel method for treating irreversible pulpitis due to its ability to maintain tooth vitality. The successful implementation of this technique depends on scaffolds and transplantation of exogenous stem cells or recruitment of endogenous stem cells. Accordingly, the three-dimensional structure and viscoelastic characteristics of hydrogel scaffolds, which parallel those of the extracellular matrix, have generated considerable interest. Furthermore, hydrogels support the controlled release of regenerative drugs and to load a wide variety of bioactive molecules. By integrating antibacterial agents into the hydrogel matrix and stimulating an immune response, root canal disinfection can be significantly improved and the rate of pulp regeneration can be accelerated. This review aims to provide an overview of the clinical applications of hydrogels that have been reported in the last 5 years, and offer a comprehensive summary of the different approaches that have been utilized for the optimization of hydrogel scaffolds for pulp regeneration. Advancements and challenges in pulp regeneration using hydrogels treating aged teeth are discussed.
Collapse
Affiliation(s)
- Xiaofei Guo
- Xiangya Shool of Stomatology, Central South University, Changsha, Hunan, China
| | - Jiaxuan Li
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Yong Wu
- Department of Nephrology, The Second Xiangya Hospital, Key Laboratory of Kidney Disease and Blood Purification, Central South University, Changsha, Hunan, China
| | - Laijun Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China; School of Stomatology, Changsha Medical University, Changsha, Hunan 410219, China.
| |
Collapse
|
3
|
Cheng MH, Chang CW, Wang J, Bupphathong S, Huang W, Lin CH. 3D-Bioprinted GelMA Scaffold with ASCs and HUVECs for Engineering Vascularized Adipose Tissue. ACS APPLIED BIO MATERIALS 2024; 7:406-415. [PMID: 38148527 DOI: 10.1021/acsabm.3c00964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The purpose of tissue engineering is to reconstruct parts of injured tissues and to resolve the shortage of organ donations. However, the main concern is the limited size of engineered tissue due to insufficient oxygen and nutrition distribution in large three-dimensional (3D) tissue constructs. To provide better support for cells inside the scaffolds, the vascularization of blood vessels within the scaffold could be a solution. This study compared the effects of different culturing systems using human adipose tissue-derived stem/stromal cells (ASCs), human umbilical vein endothelial cells (HUVECs), and coculture of ASCs and HUVECs in 3D-bioprinted gelatin methacrylate (GelMA) hydrogel constructs. The in vitro results showed that the number of live cells was highest in the coculture of ASCs and HUVECs in the GelMA hydrogel after culturing for 21 days. Additionally, the tubular structure was the most abundant in the GelMA hydrogel, containing both ASCs and HUVECs. In the in vivo test, blood vessels were present in both the HUVECs and the coculture of ASCs and HUVECs hydrogels implanted in mice. However, the blood vessel density was the highest in the HUVEC and ASC coculture groups. These findings indicate that the 3D-bioprinted GelMA hydrogel coculture system could be a promising biomaterial for large tissue engineering applications.
Collapse
Affiliation(s)
- Ming-Huei Cheng
- Center of Lymphedema Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chien-Wen Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jerry Wang
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Sasinan Bupphathong
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Wei Huang
- Department of Orthodontics, Rutgers School of Dental Medicine, Newark, New Jersey 07103, United States
| | - Chih-Hsin Lin
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
4
|
Li A, Li Z, Chiu W, Xiong C, Chen Q, Chen J, Lai X, Li W, Ke Q, Liu J, Zhang X. Efficient Treatment of Pulpitis via Transplantation of Human Pluripotent Stem Cell-Derived Pericytes Partially through LTBP1-Mediated T Cell Suppression. Biomedicines 2023; 11:3199. [PMID: 38137420 PMCID: PMC10740489 DOI: 10.3390/biomedicines11123199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Dental pulp pericytes are reported to have the capacity to generate odontoblasts and express multiple cytokines and chemokines that regulate the local immune microenvironment, thus participating in the repair of dental pulp injury in vivo. However, it has not yet been reported whether the transplantation of exogenous pericytes can effectively treat pulpitis, and the underlying molecular mechanism remains unknown. In this study, using a lineage-tracing mouse model, we showed that most dental pulp pericytes are derived from cranial neural crest. Then, we demonstrated that the ablation of pericytes could induce a pulpitis-like phenotype in uninfected dental pulp in mice, and we showed that the significant loss of pericytes occurs during pupal inflammation, implying that the transplantation of pericytes may help to restore dental pulp homeostasis during pulpitis. Subsequently, we successfully generated pericytes with immunomodulatory activity from human pluripotent stem cells through the intermediate stage of the cranial neural crest with a high level of efficiency. Most strikingly, for the first time we showed that, compared with the untreated pulpitis group, the transplantation of hPSC-derived pericytes could substantially inhibit vascular permeability (the extravascular deposition of fibrinogen, ** p < 0.01), alleviate pulpal inflammation (TCR+ cell infiltration, * p < 0.05), and promote the regeneration of dentin (** p < 0.01) in the mouse model of pulpitis. In addition, we discovered that the knockdown of latent transforming growth factor beta binding protein 1 (LTBP1) remarkably suppressed the immunoregulation ability of pericytes in vitro and compromised their in vivo regenerative potential in pulpitis. These results indicate that the transplantation of pericytes could efficiently rescue the aberrant phenotype of pulpal inflammation, which may be partially due to LTBP1-mediated T cell suppression.
Collapse
Affiliation(s)
- Anqi Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (A.L.); (W.C.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Zhuoran Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; (Z.L.); (C.X.); (Q.C.); (J.C.); (W.L.); (Q.K.)
| | - Weicheng Chiu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (A.L.); (W.C.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Chuanfeng Xiong
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; (Z.L.); (C.X.); (Q.C.); (J.C.); (W.L.); (Q.K.)
| | - Qian Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; (Z.L.); (C.X.); (Q.C.); (J.C.); (W.L.); (Q.K.)
| | - Junhua Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; (Z.L.); (C.X.); (Q.C.); (J.C.); (W.L.); (Q.K.)
| | - Xingqiang Lai
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China;
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; (Z.L.); (C.X.); (Q.C.); (J.C.); (W.L.); (Q.K.)
- Guangdong Key Laboratory of Reproductive Medicine, Guangzhou 510080, China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; (Z.L.); (C.X.); (Q.C.); (J.C.); (W.L.); (Q.K.)
| | - Jia Liu
- VIP Medical Service Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xinchun Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (A.L.); (W.C.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| |
Collapse
|
5
|
Liang J, Zhao J, Chen Y, Li B, Li Y, Lu F, Dong Z. New Insights and Advanced Strategies for In Vitro Construction of Vascularized Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:692-709. [PMID: 37409413 DOI: 10.1089/ten.teb.2023.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Inadequate vascularization is a significant barrier to clinical application of large-volume tissue engineered grafts. In contrast to in vivo vascularization, in vitro prevascularization shortens the time required for host vessels to grow into the graft core and minimizes necrosis in the core region of the graft. However, the challenge of prevascularization is to construct hierarchical perfusable vascular networks, increase graft volume, and form a vascular tip that can anastomose with host vessels. Understanding advances in in vitro prevascularization techniques and new insights into angiogenesis could overcome these obstacles. In the present review, we discuss new perspectives on angiogenesis, the differences between in vivo and in vitro tissue vascularization, the four elements of prevascularized constructs, recent advances in perfusion-based in vitro prevascularized tissue fabrication, and prospects for large-volume prevascularized tissue engineering.
Collapse
Affiliation(s)
- Jiancong Liang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jing Zhao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yunzi Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Bin Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ye Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ziqing Dong
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
6
|
Wang YT, Meng XT. A review of the evidence to support electrical stimulation -induced vascularization in engineered tissue. Regen Ther 2023; 24:237-244. [PMID: 37534238 PMCID: PMC10393514 DOI: 10.1016/j.reth.2023.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/25/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023] Open
Abstract
Tissue engineering presents a promising solution for regenerative medicine and the success depends on the supply of oxygen/nutrients to the cells by rapid vascularization. More and more technologies are being developed to facilitate vascularization of engineered tissues. In this review, we indicated that a regulatory system which influences all angiogenesis associated cells to achieve their desired functional state is ideal for the construction of vascularized engineered tissues in vitro. We presented the evidence that electrical stimulation (ES) enhances the synergistic promotion of co-cultured angiogenesis associated cells and its potential regulatory mechanisms, highlighted the potential advantages of a combination of mesenchymal stem cells (MSCs), endothelial cells (ECs) and ES to achieve tissue vascularization, with particular emphasis on the different biological pathways of ES-regulated ECs. Finally, we proposed the future direction of using ES to reconstruct engineered tissue blood vessels, pointed out the potential advantages and disadvantages of ES application on tissue vascularization.
Collapse
Affiliation(s)
- Ying-tong Wang
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
- The Undergraduate Center of Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xiao-ting Meng
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| |
Collapse
|
7
|
Shopova D, Mihaylova A, Yaneva A, Bakova D. Advancing Dentistry through Bioprinting: Personalization of Oral Tissues. J Funct Biomater 2023; 14:530. [PMID: 37888196 PMCID: PMC10607235 DOI: 10.3390/jfb14100530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Despite significant advancements in dental tissue restoration and the use of prostheses for addressing tooth loss, the prevailing clinical approaches remain somewhat inadequate for replicating native dental tissue characteristics. The emergence of three-dimensional (3D) bioprinting offers a promising innovation within the fields of regenerative medicine and tissue engineering. This technology offers notable precision and efficiency, thereby introducing a fresh avenue for tissue regeneration. Unlike the traditional framework encompassing scaffolds, cells, and signaling factors, 3D bioprinting constitutes a contemporary addition to the arsenal of tissue engineering tools. The ongoing shift from conventional dentistry to a more personalized paradigm, principally under the guidance of bioprinting, is poised to exert a significant influence in the foreseeable future. This systematic review undertakes the task of aggregating and analyzing insights related to the application of bioprinting in the context of regenerative dentistry. Adhering to PRISMA guidelines, an exhaustive literature survey spanning the years 2019 to 2023 was performed across prominent databases including PubMed, Scopus, Google Scholar, and ScienceDirect. The landscape of regenerative dentistry has ushered in novel prospects for dentoalveolar treatments and personalized interventions. This review expounds on contemporary accomplishments and avenues for the regeneration of pulp-dentin, bone, periodontal tissues, and gingival tissues. The progressive strides achieved in the realm of bioprinting hold the potential to not only enhance the quality of life but also to catalyze transformative shifts within the domains of medical and dental practices.
Collapse
Affiliation(s)
- Dobromira Shopova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Anna Mihaylova
- Department of Healthcare Management, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria (D.B.)
| | - Antoniya Yaneva
- Department of Medical Informatics, Biostatistics and eLearning, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Desislava Bakova
- Department of Healthcare Management, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria (D.B.)
| |
Collapse
|
8
|
Franca CM, Athirasala A, Subbiah R, Tahayeri A, Selvakumar P, Mansoorifar A, Horsophonphong S, Sercia A, Nih L, Bertassoni LE. High-Throughput Bioprinting of Geometrically-Controlled Pre-Vascularized Injectable Microgels for Accelerated Tissue Regeneration. Adv Healthc Mater 2023; 12:e2202840. [PMID: 37219011 PMCID: PMC10526736 DOI: 10.1002/adhm.202202840] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/01/2023] [Indexed: 05/24/2023]
Abstract
Successful integration of cell-laden tissue constructs with host vasculature depends on the presence of functional capillaries to provide oxygen and nutrients to the embedded cells. However, diffusion limitations of cell-laden biomaterials challenge regeneration of large tissue defects that require bulk-delivery of hydrogels and cells. Herein, a strategy to bioprint geometrically controlled, endothelial and stem-cell laden microgels in high-throughput is introduced, allowing these cells to form mature and functional pericyte-supported vascular capillaries in vitro, and then injecting these pre-vascularized constructs minimally invasively in-vivo. It is demonstrated that this approach offers both desired scalability for translational applications as well as unprecedented levels of control over multiple microgel parameters to design spatially-tailored microenvironments for better scaffold functionality and vasculature formation. As a proof-of-concept, the regenerative capacity of the bioprinted pre-vascularized microgels is compared with that of cell-laden monolithic hydrogels of the same cellular and matrix composition in hard-to-heal defects in vivo. The results demonstrate that the bioprinted microgels have faster and higher connective tissue formation, more vessels per area, and widespread presence of functional chimeric (human and murine) vascular capillaries across regenerated sites. The proposed strategy, therefore, addresses a significant issue in regenerative medicine, demonstrating a superior potential to facilitate translational regenerative efforts.
Collapse
Affiliation(s)
- Cristiane M Franca
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Portland, OR, 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Portland, OR, 97201, USA
- Division of Biomaterial and Biosciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, 2730 S Moody Ave, Portland, OR, 97201, USA
| | - Avathamsa Athirasala
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Portland, OR, 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Portland, OR, 97201, USA
- Division of Biomaterial and Biosciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, 2730 S Moody Ave, Portland, OR, 97201, USA
| | - Ramesh Subbiah
- Division of Biomaterial and Biosciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, 2730 S Moody Ave, Portland, OR, 97201, USA
| | - Anthony Tahayeri
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Portland, OR, 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Portland, OR, 97201, USA
- Division of Biomaterial and Biosciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, 2730 S Moody Ave, Portland, OR, 97201, USA
| | - Prakash Selvakumar
- Division of Biomaterial and Biosciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, 2730 S Moody Ave, Portland, OR, 97201, USA
| | - Amin Mansoorifar
- Division of Biomaterial and Biosciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, 2730 S Moody Ave, Portland, OR, 97201, USA
| | - Sivaporn Horsophonphong
- Department of Pediatric Dentistry, School of Dentistry, Mahidol University, Bangkok, 73170, Thailand
| | - Ashley Sercia
- Division of Biomaterial and Biosciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, 2730 S Moody Ave, Portland, OR, 97201, USA
| | - Lina Nih
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
- David Geffen School of Medicine at University of California, Los Angeles, CA, 90095, USA
| | - Luiz E Bertassoni
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Portland, OR, 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Portland, OR, 97201, USA
- Division of Biomaterial and Biosciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, 2730 S Moody Ave, Portland, OR, 97201, USA
- Division of Oncological Sciences, Knight Cancer Institute, Portland, OR, 97201, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, 97201, USA
- Center for Regenerative Medicine, School of Medicine, Oregon Health & Science University, Portland, OR, 97201, USA
| |
Collapse
|
9
|
He J, Sun Y, Gao Q, He C, Yao K, Wang T, Xie M, Yu K, Nie J, Chen Y, He Y. Gelatin Methacryloyl Hydrogel, from Standardization, Performance, to Biomedical Application. Adv Healthc Mater 2023; 12:e2300395. [PMID: 37115708 DOI: 10.1002/adhm.202300395] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/23/2023] [Indexed: 04/29/2023]
Abstract
Gelatin methacryloyl (GelMA), a photocurable hydrogel, is widely used in 3D culture, particularly in 3D bioprinting, due to its high biocompatibility, tunable physicochemical properties, and excellent formability. However, as the properties and performances of GelMA vary under different synthetic conditions, there is a lack of standardization, leading to conflicting results. In this study, a uniform standard is established to understand and enhance GelMA applications. First, the basic concept of GelMA and the density of the molecular network (DMN) are defined. Second, two properties, degrees of substitution and ratio of solid content, as the main measurable parameters determining the DMN are used. Third, the mechanisms and relationships between DMN and its performance in various applications in terms of porosity, viscosity, formability, mechanical strength, swelling, biodegradation, and cytocompatibility are theoretically explained. The main questions that are answered: what does performance mean, why is it important, how to optimize the basic parameters to improve the performance, and how to characterize it reasonably and accurately? Finally, it is hoped that this knowledge will eliminate the need for researchers to conduct tedious and repetitive pre-experiments, enable easy communication for achievements between groups under the same standard, and fully explore the potential of the GelMA hydrogel.
Collapse
Affiliation(s)
- Jing He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuan Sun
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qing Gao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Engineering for Life Group (EFL), Suzhou, 215101, China
| | - Chanfan He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ke Yao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tongyao Wang
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingjun Xie
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Plastic and Reconstructive Surgery Center, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Kang Yu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jing Nie
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuewei Chen
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Engineering for Life Group (EFL), Suzhou, 215101, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
10
|
Chen A, Deng S, Lai J, Li J, Chen W, Varma SN, Zhang J, Lei C, Liu C, Huang L. Hydrogels for Oral Tissue Engineering: Challenges and Opportunities. Molecules 2023; 28:3946. [PMID: 37175356 PMCID: PMC10179962 DOI: 10.3390/molecules28093946] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Oral health is crucial to daily life, yet many people worldwide suffer from oral diseases. With the development of oral tissue engineering, there is a growing demand for dental biomaterials. Addressing oral diseases often requires a two-fold approach: fighting bacterial infections and promoting tissue growth. Hydrogels are promising tissue engineering biomaterials that show great potential for oral tissue regeneration and drug delivery. In this review, we present a classification of hydrogels commonly used in dental research, including natural and synthetic hydrogels. Furthermore, recent applications of these hydrogels in endodontic restorations, periodontal tissues, mandibular and oral soft tissue restorations, and related clinical studies are also discussed, including various antimicrobial and tissue growth promotion strategies used in the dental applications of hydrogels. While hydrogels have been increasingly studied in oral tissue engineering, there are still some challenges that need to be addressed for satisfactory clinical outcomes. This paper summarizes the current issues in the abovementioned application areas and discusses possible future developments.
Collapse
Affiliation(s)
- Anfu Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (A.C.)
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, Royal National Orthopaedic Hospital, London HA4 4LP, UK
| | - Shuhua Deng
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (A.C.)
| | - Jindi Lai
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (A.C.)
| | - Jing Li
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (A.C.)
| | - Weijia Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (A.C.)
| | - Swastina Nath Varma
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, Royal National Orthopaedic Hospital, London HA4 4LP, UK
| | - Jingjing Zhang
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (A.C.)
| | - Caihong Lei
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (A.C.)
| | - Chaozong Liu
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, Royal National Orthopaedic Hospital, London HA4 4LP, UK
| | - Lijia Huang
- Guangdong Provincial Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
11
|
Cunha D, Souza N, Moreira M, Rodrigues N, Silva P, Franca C, Horsophonphong S, Sercia A, Subbiah R, Tahayeri A, Ferracane J, Yelick P, Saboia V, Bertassoni L. 3D-printed microgels supplemented with dentin matrix molecules as a novel biomaterial for direct pulp capping. Clin Oral Investig 2023; 27:1215-1225. [PMID: 36287273 PMCID: PMC10171721 DOI: 10.1007/s00784-022-04735-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/01/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To develop a 3D-printed, microparticulate hydrogel supplemented with dentin matrix molecules (DMM) as a novel regenerative strategy for dental pulp capping. MATERIALS AND METHODS Gelatin methacryloyl microgels (7% w/v) mixed with varying concentrations of DMM were printed using a digital light projection 3D printer and lyophilized for 2 days. The release profile of the DMM-loaded microgels was measured using a bicinchoninic acid assay. Next, dental pulp exposure defects were created in maxillary first molars of Wistar rats. The exposures were randomly capped with (1) inert material - negative control, (2) microgels, (3) microgels + DMM 500 µg/ml, (4) microgels + DMM 1000 µg/ml, (5) microgels + platelet-derived growth factor (PDGF 10 ng/ml), or (6) MTA (n = 15/group). After 4 weeks, animals were euthanized, and treated molars were harvested and then processed to evaluate hard tissue deposition, pulp tissue organization, and blood vessel density. RESULTS All the specimens from groups treated with microgel + 500 µg/ml, microgel + 1000 µg/ml, microgel + PDGF, and MTA showed the formation of organized pulp tissue, tertiary dentin, newly formed tubular and atubular dentin, and new blood vessel formation. Dentin bridge formation was greater and pulp necrosis was less in the microgel + DMM groups compared to MTA. CONCLUSIONS The 3D-printed photocurable microgels doped with DMM exhibited favorable cellular and inflammatory pulp responses, and significantly more tertiary dentin deposition. CLINICAL RELEVANCE 3D-printed microgel with DMM is a promising biomaterial for dentin and dental pulp regeneration in pulp capping procedures.
Collapse
Affiliation(s)
- Diana Cunha
- Post-Graduation Program in Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Nayara Souza
- Post-Graduation Program in Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Manuela Moreira
- School of Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Nara Rodrigues
- School of Dentistry, University of Fortaleza, Fortaleza, Ceará, Brazil
| | - Paulo Silva
- School of Dentistry, University of Fortaleza, Fortaleza, Ceará, Brazil
| | - Cristiane Franca
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Sivaporn Horsophonphong
- Department of Pediatric Dentistry, Faculty of Dentistry, Mahidol University, Salaya, Thailand
| | - Ashley Sercia
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Ramesh Subbiah
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Anthony Tahayeri
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Jack Ferracane
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Pamela Yelick
- Department of Orthodontics, School of Medicine, School of Engineering, Tufts University, Boston, MA, 02111, USA
| | - Vicente Saboia
- Department of Restorative Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Luiz Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA.
- Center for Regenerative Medicine, School of Medicine, Oregon Health & Science University, Portland, OR, USA.
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA.
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Portland, OR, USA.
| |
Collapse
|
12
|
Zhang L, Han Y, Chen Q, Dissanayaka WL. Sema4D-plexin-B1 signaling in recruiting dental stem cells for vascular stabilization on a microfluidic platform. LAB ON A CHIP 2022; 22:4632-4644. [PMID: 36331411 DOI: 10.1039/d2lc00632d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The recruitment of mural cells is critical for stabilization of nascent vessels. Stem cells from human exfoliated deciduous teeth (SHED) are considered to have mural cell-like properties. However, the signaling mechanisms that regulate the cross-talk between endothelial cells and SHED in recruiting them as mural cells is much less well understood. Herein, using a 3D biomimetic microfluidic device, for the first time, we unraveled the role of semaphorin 4D (Sema4D)-plexin-B1 signaling in the recruitment of SHED as mural cells during angiogenic sprouting and vasculature formation by endothelial cells (ECs) in a 3D fibrin matrix. The specific compartmentalized design of the microfluidic chip facilitated recreation of the multi-step dynamic process of angiogenesis in a time and space dependent manner. Enabled by the chip design, different morphogenic steps of angiogenesis including endothelial proliferation, migration & invasion, vascular sprout formation and recruitment of mural cells as well as functional aspects including perfusion and permeability were examined under various pharmacological and genetic manipulations. The results showed that Sema4D facilitates the interaction between endothelial cells and SHED and promotes the recruitment of SHED as mural cells in vascular stabilization. Our results further demonstrated that Sema4D exerts these effects by acting on endothelial-plexin-B1 by inducing expression of platelet-derived growth factor (PDGF)-BB, which is a major mural cell recruitment factor.
Collapse
Affiliation(s)
- Lili Zhang
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR.
| | - Yuanyuan Han
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR.
| | - Qixin Chen
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR.
| | - Waruna Lakmal Dissanayaka
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
13
|
Song W, Bo X, Ma X, Hou K, Li D, Geng W, Zeng J. Craniomaxillofacial derived bone marrow mesenchymal stem/stromal cells (BMSCs) for craniomaxillofacial bone tissue engineering: A literature review. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2022; 123:e650-e659. [PMID: 35691558 DOI: 10.1016/j.jormas.2022.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022]
|
14
|
Masson-Meyers DS, Bertassoni LE, Tayebi L. Oral mucosa equivalents, prevascularization approaches, and potential applications. Connect Tissue Res 2022; 63:514-529. [PMID: 35132918 PMCID: PMC9357199 DOI: 10.1080/03008207.2022.2035375] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/10/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Oral mucosa equivalents (OMEs) have been used as in vitro models (eg, for studies of human oral mucosa biology and pathology, toxicological and pharmacological tests of oral care products), and clinically to treat oral defects. However, the human oral mucosa is a highly vascularized tissue and implantation of large OMEs can fail due to a lack of vascularization. To develop equivalents that better resemble the human oral mucosa and increase the success of implantation to repair large-sized defects, efforts have been made to prevascularize these constructs. PURPOSE The aim of this narrative review is to provide an overview of the human oral mucosa structure, common approaches for its reconstruction, and the development of OMEs, their prevascularization, and in vitro and clinical potential applications. STUDY SELECTION Articles on non-prevascularized and prevascularized OMEs were included, since the development and applications of non-prevascularized OMEs are a foundation for the design, fabrication, and optimization of prevascularized OMEs. CONCLUSIONS Several studies have reported the development and in vitro and clinical applications of OMEs and only a few were found on prevascularized OMEs using different approaches of fabrication and incorporation of endothelial cells, indicating a lack of standardized protocols to obtain these equivalents. However, these studies have shown the feasibility of prevascularizing OMEs and their implantation in animal models resulted in enhanced integration and healing. Vascularization in tissue equivalents is still a challenge, and optimization of cell culture conditions, biomaterials, and fabrication techniques along with clinical studies is required.
Collapse
Affiliation(s)
| | - Luiz E. Bertassoni
- School of Dentistry, Oregon Health and Science University. Portland, OR 97201, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry. Milwaukee, WI 53233, USA
| |
Collapse
|
15
|
A Molecular View on Biomaterials and Dental Stem Cells Interactions: Literature Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biomaterials and stem cells are essential components in the field of regenerative medicine. Various biomaterials have been designed that have appropriate biochemical and biophysical characteristics to mimic the microenvironment of an extracellular matrix. Dental stem cells (DT-MSCs) represent a novel source for the development of autologous therapies due to their easy availability. Although research on biomaterials and DT-MSCs has progressed, there are still challenges in the characteristics of biomaterials and the molecular mechanisms involved in regulating the behavior of DT-MSCs. In this review, the characteristics of biomaterials are summarized, and their classification according to their source, bioactivity, and different biological effects on the expansion and differentiation of DT-MSCs is summarized. Finally, advances in research on the interaction of biomaterials and the molecular components involved (mechanosensors and mechanotransduction) in DT-MSCs during their proliferation and differentiation are analyzed. Understanding the molecular dynamics of DT-MSCs and biomaterials can contribute to research in regenerative medicine and the development of autologous stem cell therapies.
Collapse
|
16
|
Mastrullo V, van der Veen DR, Gupta P, Matos RS, Johnston JD, McVey JH, Madeddu P, Velliou EG, Campagnolo P. Pericytes' Circadian Clock Affects Endothelial Cells' Synchronization and Angiogenesis in a 3D Tissue Engineered Scaffold. Front Pharmacol 2022; 13:867070. [PMID: 35387328 PMCID: PMC8977840 DOI: 10.3389/fphar.2022.867070] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/23/2022] [Indexed: 01/02/2023] Open
Abstract
Angiogenesis, the formation of new capillaries from existing ones, is a fundamental process in regenerative medicine and tissue engineering. While it is known to be affected by circadian rhythms in vivo, its peripheral regulation within the vasculature and the role it performs in regulating the interplay between vascular cells have not yet been investigated. Peripheral clocks within the vasculature have been described in the endothelium and in smooth muscle cells. However, to date, scarce evidence has been presented regarding pericytes, a perivascular cell population deeply involved in the regulation of angiogenesis and vessel maturation, as well as endothelial function and homeostasis. More crucially, pericytes are also a promising source of cells for cell therapy and tissue engineering. Here, we established that human primary pericytes express key circadian genes and proteins in a rhythmic fashion upon synchronization. Conversely, we did not detect the same patterns in cultured endothelial cells. In line with these results, pericytes' viability was disproportionately affected by circadian cycle disruption, as compared to endothelial cells. Interestingly, endothelial cells' rhythm could be induced following exposure to synchronized pericytes in a contact co-culture. We propose that this mechanism could be linked to the altered release/uptake pattern of lactate, a known mediator of cell-cell interaction which was specifically altered in pericytes by the knockout of the key circadian regulator Bmal1. In an angiogenesis assay, the maturation of vessel-like structures was affected only when both endothelial cells and pericytes did not express Bmal1, indicating a compensation system. In a 3D tissue engineering scaffold, a synchronized clock supported a more structured organization of cells around the scaffold pores, and a maturation of vascular structures. Our results demonstrate that pericytes play a critical role in regulating the circadian rhythms in endothelial cells, and that silencing this system disproportionately affects their pro-angiogenic function. Particularly, in the context of tissue engineering and regenerative medicine, considering the effect of circadian rhythms may be critical for the development of mature vascular structures and to obtain the maximal reparative effect.
Collapse
Affiliation(s)
- Valeria Mastrullo
- Cardiovascular Section, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
- Chronobiology Section, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, United Kingdom
| | - Daan R. van der Veen
- Chronobiology Section, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
| | - Priyanka Gupta
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, United Kingdom
| | - Rolando S. Matos
- Cardiovascular Section, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
| | - Jonathan D. Johnston
- Chronobiology Section, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
| | - John H. McVey
- Cardiovascular Section, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
| | - Paolo Madeddu
- Experimental Cardiovascular Medicine, University of Bristol, Bristol Heart Institute, Bristol Royal Infirmary, Bristol, United Kingdom
| | - Eirini G. Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, United Kingdom
- Centre for 3D Models of Health and Disease, Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London (UCL), London, United Kingdom
| | - Paola Campagnolo
- Cardiovascular Section, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
17
|
Mykuliak A, Yrjänäinen A, Mäki AJ, Gebraad A, Lampela E, Kääriäinen M, Pakarinen TK, Kallio P, Miettinen S, Vuorenpää H. Vasculogenic Potency of Bone Marrow- and Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells Results in Differing Vascular Network Phenotypes in a Microfluidic Chip. Front Bioeng Biotechnol 2022; 10:764237. [PMID: 35211462 PMCID: PMC8861308 DOI: 10.3389/fbioe.2022.764237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/11/2022] [Indexed: 12/27/2022] Open
Abstract
The vasculature is an essential, physiological element in virtually all human tissues. Formation of perfusable vasculature is therefore crucial for reliable tissue modeling. Three-dimensional vascular networks can be formed through the co-culture of endothelial cells (ECs) with stromal cells embedded in hydrogel. Mesenchymal stem/stromal cells (MSCs) derived from bone marrow (BMSCs) and adipose tissue (ASCs) are an attractive choice as stromal cells due to their natural perivascular localization and ability to support formation of mature and stable microvessels in vitro. So far, BMSCs and ASCs have been compared as vasculature-supporting cells in static cultures. In this study, BMSCs and ASCs were co-cultured with endothelial cells in a fibrin hydrogel in a perfusable microfluidic chip. We demonstrated that using MSCs of different origin resulted in vascular networks with distinct phenotypes. Both types of MSCs supported formation of mature and interconnected microvascular networks-on-a-chip. However, BMSCs induced formation of fully perfusable microvasculature with larger vessel area and length whereas ASCs resulted in partially perfusable microvascular networks. Immunostainings revealed that BMSCs outperformed ASCs in pericytic characteristics. Moreover, co-culture with BMSCs resulted in significantly higher expression levels of endothelial and pericyte-specific genes, as well as genes involved in vasculature maturation. Overall, our study provides valuable knowledge on the properties of MSCs as vasculature-supporting cells and highlights the importance of choosing the application-specific stromal cell source for vascularized organotypic models.
Collapse
Affiliation(s)
- Anastasiia Mykuliak
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Alma Yrjänäinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Antti-Juhana Mäki
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Arjen Gebraad
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Ella Lampela
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Minna Kääriäinen
- Department of Plastic and Reconstructive Surgery, Tampere University Hospital, Tampere, Finland
| | | | - Pasi Kallio
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Hanna Vuorenpää
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
18
|
Wang L, Cao Y, Shen Z, Li M, Zhang W, Liu Y, Zhang Y, Duan J, Ma Z, Sang S. 3D printed GelMA/carboxymethyl chitosan composite scaffolds for vasculogenesis. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2032702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Lijing Wang
- Shanxi Key Laboratory of Micro Nano Sensors and Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| | - Yanyan Cao
- Shanxi Key Laboratory of Micro Nano Sensors and Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
- College of Information Science and Engineering, Hebei North University, Zhangjiakou, China
| | - Zhizhong Shen
- Shanxi Key Laboratory of Micro Nano Sensors and Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| | - Meng Li
- Shanxi Key Laboratory of Micro Nano Sensors and Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| | - Wendong Zhang
- Shanxi Key Laboratory of Micro Nano Sensors and Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| | - Yu Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yating Zhang
- Shanxi Key Laboratory of Micro Nano Sensors and Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| | - Jiahui Duan
- Shanxi Key Laboratory of Micro Nano Sensors and Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| | - Zhuwei Ma
- Shanxi Key Laboratory of Micro Nano Sensors and Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors and Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
19
|
Bertassoni LE. Bioprinting of Complex Multicellular Organs with Advanced Functionality-Recent Progress and Challenges Ahead. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2101321. [PMID: 35060652 PMCID: PMC10171718 DOI: 10.1002/adma.202101321] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/20/2021] [Indexed: 05/12/2023]
Abstract
Bioprinting has emerged as one of the most promising strategies for fabrication of functional organs in the lab as an alternative to transplant organs. While progress in the field has mostly been restricted to a few miniaturized tissues with minimal biological functionality until a few years ago, recent progress has advanced the concept of building three-dimensional multicellular organ complexity remarkably. This review discusses a series of milestones that have paved the way for bioprinting of tissue constructs that have advanced levels of biological and architectural functionality. Critical materials, engineering and biological challenges that are key to addressing the desirable function of engineered organs are presented. These are discussed in light of the many difficulties to replicate the heterotypic organization of multicellular solid organs, the nanoscale precision of the extracellular microenvironment in hierarchical tissues, as well as the advantages and limitations of existing bioprinting methods to adequately overcome these barriers. In summary, the advances of the field toward realistic manufacturing of functional organs have never been so extensive, and this manuscript serves as a road map for some of the recent progress and the challenges ahead.
Collapse
Affiliation(s)
- Luiz E Bertassoni
- Division of Biomaterials and Biomechanics, School of Dentistry, Oregon Health and Science University, Portland, OR, 97201, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
- Center for Regenerative Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| |
Collapse
|
20
|
Cucu I, Nicolescu MI. A Synopsis of Signaling Crosstalk of Pericytes and Endothelial Cells in Salivary Gland. Dent J (Basel) 2021; 9:dj9120144. [PMID: 34940041 PMCID: PMC8700478 DOI: 10.3390/dj9120144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
The salivary gland (SG) microvasculature constitutes a dynamic cellular organization instrumental to preserving tissue stability and homeostasis. The interplay between pericytes (PCs) and endothelial cells (ECs) culminates as a key ingredient that coordinates the development, maturation, and integrity of vessel building blocks. PCs, as a variety of mesenchymal stem cells, enthrall in the field of regenerative medicine, supporting the notion of regeneration and repair. PC-EC interconnections are pivotal in the kinetic and intricate process of angiogenesis during both embryological and post-natal development. The disruption of this complex interlinkage corresponds to SG pathogenesis, including inflammation, autoimmune disorders (Sjögren’s syndrome), and tumorigenesis. Here, we provided a global portrayal of major signaling pathways between PCs and ECs that cooperate to enhance vascular steadiness through the synergistic interchange. Additionally, we delineated how the crosstalk among molecular networks affiliate to contribute to a malignant context. Additionally, within SG microarchitecture, telocytes and myoepithelial cells assemble a labyrinthine companionship, which together with PCs appear to synchronize the regenerative potential of parenchymal constituents. By underscoring the intricacy of signaling cascades within cellular latticework, this review sketched a perceptive basis for target-selective drugs to safeguard SG function.
Collapse
Affiliation(s)
- Ioana Cucu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mihnea Ioan Nicolescu
- Division of Histology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Laboratory of Radiobiology, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
- Correspondence:
| |
Collapse
|
21
|
Functional Dental Pulp Regeneration: Basic Research and Clinical Translation. Int J Mol Sci 2021; 22:ijms22168991. [PMID: 34445703 PMCID: PMC8396610 DOI: 10.3390/ijms22168991] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Pulpal and periapical diseases account for a large proportion of dental visits, the current treatments for which are root canal therapy (RCT) and pulp revascularisation. Despite the clinical signs of full recovery and histological reconstruction, true regeneration of pulp tissues is still far from being achieved. The goal of regenerative endodontics is to promote normal pulp function recovery in inflamed or necrotic teeth that would result in true regeneration of the pulpodentinal complex. Recently, rapid progress has been made related to tissue engineering-mediated pulp regeneration, which combines stem cells, biomaterials, and growth factors. Since the successful isolation and characterisation of dental pulp stem cells (DPSCs) and other applicable dental mesenchymal stem cells, basic research and preclinical exploration of stem cell-mediated functional pulp regeneration via cell transplantation and cell homing have received considerably more attention. Some of this effort has translated into clinical therapeutic applications, bringing a ground-breaking revolution and a new perspective to the endodontic field. In this article, we retrospectively examined the current treatment status and clinical goals of pulpal and periapical diseases and scrutinized biological studies of functional pulp regeneration with a focus on DPSCs, biomaterials, and growth factors. Then, we reviewed preclinical experiments based on various animal models and research strategies. Finally, we summarised the current challenges encountered in preclinical or clinical regenerative applications and suggested promising solutions to address these challenges to guide tissue engineering-mediated clinical translation in the future.
Collapse
|
22
|
Mattei V, Martellucci S, Pulcini F, Santilli F, Sorice M, Delle Monache S. Regenerative Potential of DPSCs and Revascularization: Direct, Paracrine or Autocrine Effect? Stem Cell Rev Rep 2021; 17:1635-1646. [PMID: 33829353 PMCID: PMC8553678 DOI: 10.1007/s12015-021-10162-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
A new source of mesenchymal stem cells has recently been discovered, the so-called dental pulp derived stem cells (DPSCs) which therefore could represent potentially tools for regenerative medicine. DPSC originate from the neural crest and are physiologically involved in dentin homeostasis; moreover, they contribute to bone remodeling and differentiation into several tissues including cartilage, bone, adipose and nervous tissues. DPSCs have also been shown to influence the angiogenesis process, for example through the release of secretory factors or by differentiating into vascular and/or perivascular cells. Angiogenesis, that has a pivotal role in tissue regeneration and repair, is defined as the formation of new vessels from preexisting vessels and is mediated by mutual and reciprocal interactions between endothelial cells and perivascular cells. It is also known that co-cultures of perivascular and endothelial cells (ECs) can form a vascular network in vitro and also in vivo. Since DPSCs seem to have characteristics similar to pericytes, understanding the possible mechanism of interaction between DPSCs and ECs during neo-angiogenesis is dramatically important for the development of advanced clinical application in the field of regeneration.
Collapse
Affiliation(s)
- Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100, Rieti, Italy
- Department of Experimental Medicine, "Sapienza" University, 00161, Rome, Italy
| | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100, Rieti, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Fanny Pulcini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100, Rieti, Italy
- Department of Experimental Medicine, "Sapienza" University, 00161, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, "Sapienza" University, 00161, Rome, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
- StemTeCh Group, Chieti, Italy.
| |
Collapse
|