1
|
Borreguero J, Galve F, Algarín JM, Alonso J. Zero-echo-time sequences in highly inhomogeneous fields. Magn Reson Med 2025; 93:1190-1204. [PMID: 39428921 DOI: 10.1002/mrm.30352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
PURPOSE Zero-echo-time (ZTE) sequences have proven a powerful tool for MRI of ultrashortT 2 $$ {T}_2 $$ tissues, but they fail to produce useful images in the presence of strong field inhomogeneities (14 000 ppm). Here we seek a method to correct reconstruction artifacts from non-Cartesian acquisitions in highly inhomogeneousB 0 $$ {\mathrm{B}}_0 $$ , where the standard double-shot gradient-echo approach to field mapping fails. METHODS We present a technique based on magnetic field maps obtained from two geometric distortion-free point-wise (SPRITE) acquisitions. To this end, we employ three scanners with varying field homogeneities. These maps are used for model-based image reconstruction with iterative algebraic techniques (ART). For comparison, the same prior information is fed also to widely used Conjugate Phase (CP) algorithms. RESULTS Distortions and artifacts coming from severeB 0 $$ {\mathrm{B}}_0 $$ inhomogeneities, at the level of the encoding gradient, are largely reverted by our method, as opposed to CP reconstructions. This holds even close to the limit where intra-voxel bandwidths (determined byB 0 $$ {\mathrm{B}}_0 $$ inhomogeneities, up to 1.2 kHz) are comparable to the encoding inter-voxel bandwidth (determined by the gradient fields, 625 Hz in this work). CONCLUSION We have benchmarked the performance of a new method for ZTE imaging in highly inhomogeneous magnetic fields. For example, this can be exploited for dental imaging in affordable low-field MRI systems, and can be expanded for arbitrary pulse sequences and extreme magnet geometries, as in, for example, single-sided MRI.
Collapse
Affiliation(s)
- Jose Borreguero
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M), Spanish National Research Council (CSIC), Universitat Politècnica de València (UPV), Valencia, Spain
- Tesoro Imaging S.L., Valencia, Spain
| | - Fernando Galve
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M), Spanish National Research Council (CSIC), Universitat Politècnica de València (UPV), Valencia, Spain
| | - José M Algarín
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M), Spanish National Research Council (CSIC), Universitat Politècnica de València (UPV), Valencia, Spain
| | - Joseba Alonso
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M), Spanish National Research Council (CSIC), Universitat Politècnica de València (UPV), Valencia, Spain
| |
Collapse
|
2
|
Galve F, Pallás E, Guallart-Naval T, García-Cristóbal P, Martínez P, Algarín JM, Borreguero J, Bosch R, Juan-Lloris F, Benlloch JM, Alonso J. Elliptical Halbach magnet and gradient modules for low-field portable magnetic resonance imaging. NMR IN BIOMEDICINE 2024; 37:e5258. [PMID: 39350507 DOI: 10.1002/nbm.5258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 11/15/2024]
Abstract
This study aims to develop methods to design the complete magnetic system for a truly portable MRI scanner for neurological and musculoskeletal (MSK) applications, optimized for field homogeneity, field of view (FoV), and gradient performance compared to existing low-weight configurations. We explore optimal elliptic-bore Halbach configurations based on discrete arrays of permanent magnets. In this way, we seek to improve the field homogeneity and remove constraints to the extent of the gradient coils typical of Halbach magnets. Specifically, we have optimized a tightly packed distribution of magnetic Nd2Fe14B cubes with differential evolution algorithms and a second array of shimming magnets with interior point and differential evolution methods. We have also designed and constructed an elliptical set of gradient coils that extend over the whole magnet length, maximizing the distance between the lobe centers. These are optimized with a target field method minimizing a cost function that considers also heat dissipation. We have employed the new toolbox to build the main magnet and gradient modules for a portable MRI scanner designed for point-of-care and residential use. The elliptical Halbach bore has semi-axes of 10 and 14& cm, and the magnet generates a field of 87& mT homogeneous down to 5700& ppm (parts per million) in a 20-cm diameter FoV; it weighs 216& kg and has a width of 65& cm and a height of 72& cm. Gradient efficiencies go up to around 0.8& mT/m/A, for a maximum of 12& mT/m within 0.5& ms with 15& A and 15& V amplifier. The distance between lobes is 28& cm, significantly increased with respect to other Halbach-based scanners. Heat dissipation is around 25& W at maximum power, and gradient deviations from linearity are below 20% in a 20-cm sphere. Elliptic-bore Halbach magnets enhance the ergonomicity and field distribution of low-cost portable MRI scanners, while allowing for full-length gradient support to increase the FoV. This geometry can be potentially adapted for a prospective low-cost whole-body technology.
Collapse
Affiliation(s)
- Fernando Galve
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M), Spanish National Research Council (CSIC) and Universitat Politècnica de València (UPV), Valencia, Spain
| | - Eduardo Pallás
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M), Spanish National Research Council (CSIC) and Universitat Politècnica de València (UPV), Valencia, Spain
| | - Teresa Guallart-Naval
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M), Spanish National Research Council (CSIC) and Universitat Politècnica de València (UPV), Valencia, Spain
| | - Pablo García-Cristóbal
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M), Spanish National Research Council (CSIC) and Universitat Politècnica de València (UPV), Valencia, Spain
| | | | - José M Algarín
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M), Spanish National Research Council (CSIC) and Universitat Politècnica de València (UPV), Valencia, Spain
| | | | - Rubén Bosch
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M), Spanish National Research Council (CSIC) and Universitat Politècnica de València (UPV), Valencia, Spain
| | | | - José M Benlloch
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M), Spanish National Research Council (CSIC) and Universitat Politècnica de València (UPV), Valencia, Spain
| | - Joseba Alonso
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M), Spanish National Research Council (CSIC) and Universitat Politècnica de València (UPV), Valencia, Spain
| |
Collapse
|
3
|
Samardzija A, Selvaganesan K, Zhang HZ, Sun H, Sun C, Ha Y, Galiana G, Constable RT. Low-Field, Low-Cost, Point-of-Care Magnetic Resonance Imaging. Annu Rev Biomed Eng 2024; 26:67-91. [PMID: 38211326 DOI: 10.1146/annurev-bioeng-110122-022903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Low-field magnetic resonance imaging (MRI) has recently experienced a renaissance that is largely attributable to the numerous technological advancements made in MRI, including optimized pulse sequences, parallel receive and compressed sensing, improved calibrations and reconstruction algorithms, and the adoption of machine learning for image postprocessing. This new attention on low-field MRI originates from a lack of accessibility to traditional MRI and the need for affordable imaging. Low-field MRI provides a viable option due to its lack of reliance on radio-frequency shielding rooms, expensive liquid helium, and cryogen quench pipes. Moreover, its relatively small size and weight allow for easy and affordable installation in most settings. Rather than replacing conventional MRI, low-field MRI will provide new opportunities for imaging both in developing and developed countries. This article discusses the history of low-field MRI, low-field MRI hardware and software, current devices on the market, advantages and disadvantages, and low-field MRI's global potential.
Collapse
Affiliation(s)
- Anja Samardzija
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA;
| | - Kartiga Selvaganesan
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA;
| | - Horace Z Zhang
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA;
| | - Heng Sun
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA;
| | - Chenhao Sun
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yonghyun Ha
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Gigi Galiana
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA;
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - R Todd Constable
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA;
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Algarín JM, Guallart-Naval T, Borreguero J, Galve F, Alonso J. MaRGE: A graphical environment for MaRCoS. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 361:107662. [PMID: 38574458 DOI: 10.1016/j.jmr.2024.107662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
The open-source console MaRCoS, which stands for "Magnetic Resonance Control System", combines hardware, firmware and software elements for integral control of Magnetic Resonance Imaging (MRI) scanners. Previous developments have focused on making the system robust and reliable, rather than on users, who have been somewhat overlooked. This work describes a Graphical User Interface (GUI) designed for intuitive control of MaRCoS, as well as compatibility with clinical environments. The GUI is based on an arrangement of tabs and a renewed Application Program Interface (API). Compared to the previous versions, the MaRGE package ("MaRCoS Graphical Environment") includes new functionalities such as the possibility to export images to standard DICOM formats, create and manage clinical protocols, or display and process image reconstructions, among other features conceived to simplify the operation of MRI scanners. All prototypes in our facilities are commanded by MaRCoS and operated with the new GUI. Here we report on its performance on an experimental 0.2 T scanner designed for hard-tissue, as well as a 72 mT portable scanner presently installed in the radiology department of a large hospital. The possibility to customize, adapt and streamline processes has substantially improved our workflows and overall experience.
Collapse
Affiliation(s)
- José M Algarín
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M), Spanish National Research Council (CSIC) and Universitat Politècnica de València (UPV), 46022 Valencia, Spain
| | - Teresa Guallart-Naval
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M), Spanish National Research Council (CSIC) and Universitat Politècnica de València (UPV), 46022 Valencia, Spain
| | | | - Fernando Galve
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M), Spanish National Research Council (CSIC) and Universitat Politècnica de València (UPV), 46022 Valencia, Spain
| | - Joseba Alonso
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M), Spanish National Research Council (CSIC) and Universitat Politècnica de València (UPV), 46022 Valencia, Spain.
| |
Collapse
|
5
|
Negnevitsky V, Vives-Gilabert Y, Algarín JM, Craven-Brightman L, Pellicer-Guridi R, O'Reilly T, Stockmann JP, Webb A, Alonso J, Menküc B. MaRCoS, an open-source electronic control system for low-field MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 350:107424. [PMID: 37001194 DOI: 10.1016/j.jmr.2023.107424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/20/2023] [Accepted: 03/13/2023] [Indexed: 05/10/2023]
Abstract
Every magnetic resonance imaging (MRI) device requires an electronic control system that handles pulse sequences and signal detection and processing. Here we provide details on the architecture and performance of MaRCoS, a MAgnetic Resonance COntrol System developed by an open international community of low-field MRI researchers. MaRCoS is inexpensive and can handle cycle-accurate sequences without hard length limitations, rapid bursts of events, and arbitrary waveforms. It has also been readily adapted to meet the requirements of the various academic and private institutions participating in its development. We describe the MaRCoS hardware, firmware and software that enable all of the above, including a Python-based graphical user interface for pulse sequence implementation, data processing and image reconstruction.
Collapse
Affiliation(s)
| | - Yolanda Vives-Gilabert
- Intelligent Data Analysis Laboratory, Department of Electronic Engineering, Universitat de València, Valencia, Spain
| | - José M Algarín
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M), Spanish National Research Council (CSIC) and Universitat Politècnica de València (UPV), Valencia, Spain
| | - Lincoln Craven-Brightman
- Massachusetts General Hospital, A. A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Rubén Pellicer-Guridi
- Asociación de Investigación MPC, Manuel de Lardizábal 5, Donostia-San Sebastián 20018, Spain
| | - Thomas O'Reilly
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333, Netherlands
| | - Jason P Stockmann
- Massachusetts General Hospital, A. A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Andrew Webb
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333, Netherlands
| | - Joseba Alonso
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M), Spanish National Research Council (CSIC) and Universitat Politècnica de València (UPV), Valencia, Spain
| | - Benjamin Menküc
- University of Applied Sciences and Arts Dortmund, Sonnenstr. 96, Dortmund 44139, Germany.
| |
Collapse
|
6
|
Perron S, Ouriadov A. Hyperpolarized 129Xe MRI at low field: Current status and future directions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 348:107387. [PMID: 36731353 DOI: 10.1016/j.jmr.2023.107387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/07/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Magnetic Resonance Imaging (MRI) is dictated by the magnetization of the sample, and is thus a low-sensitivity imaging method. Inhalation of hyperpolarized (HP) noble gases, such as helium-3 and xenon-129, is a non-invasive, radiation-risk free imaging technique permitting high resolution imaging of the lungs and pulmonary functions, such as the lung microstructure, diffusion, perfusion, gas exchange, and dynamic ventilation. Instead of increasing the magnetic field strength, the higher spin polarization achievable from this method results in significantly higher net MR signal independent of tissue/water concentration. Moreover, the significantly longer apparent transverse relaxation time T2* of these HP gases at low magnetic field strengths results in fewer necessary radiofrequency (RF) pulses, permitting larger flip angles; this allows for high-sensitivity imaging of in vivo animal and human lungs at conventionally low (<0.5 T) field strengths and suggests that the low field regime is optimal for pulmonary MRI using hyperpolarized gases. In this review, theory on the common spin-exchange optical-pumping method of hyperpolarization and the field dependence of the MR signal of HP gases are presented, in the context of human lung imaging. The current state-of-the-art is explored, with emphasis on both MRI hardware (low field scanners, RF coils, and polarizers) and image acquisition techniques (pulse sequences) advancements. Common challenges surrounding imaging of HP gases and possible solutions are discussed, and the future of low field hyperpolarized gas MRI is posed as being a clinically-accessible and versatile imaging method, circumventing the siting restrictions of conventional high field scanners and bringing point-of-care pulmonary imaging to global facilities.
Collapse
Affiliation(s)
- Samuel Perron
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada.
| | - Alexei Ouriadov
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; School of Biomedical Engineering, Faculty of Engineering, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
7
|
Borreguero J, Galve F, Algarín JM, Benlloch JM, Alonso J. Low field slice-selective ZTE imaging of ultra-short [Formula: see text] tissues based on spin-locking. Sci Rep 2023; 13:1662. [PMID: 36717649 PMCID: PMC9886919 DOI: 10.1038/s41598-023-28640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Magnetic Resonance Imaging of hard biological tissues is very challenging due to small proton abundance and ultra-short [Formula: see text] decay times, especially at low magnetic fields, where sample magnetization is weak. While several pulse sequences, such as Ultra-short Echo Time (UTE), Zero Echo Time (ZTE) and SWeep Imaging with Fourier Transformation (SWIFT), have been developed to cope with ultra-short lived MR signals, only the latter two hold promise of imaging tissues with sub-millisecond [Formula: see text] times at low fields. All these sequences are intrinsically volumetric, thus 3D, because standard slice selection using a long soft radio-frequency pulse is incompatible with ultra-short lived signals. The exception is UTE, where double half pulses can perform slice selection, although at the cost of doubling the acquisition time. Here we demonstrate that spin-locking is a versatile and robust method for slice selection for ultra-short lived signals, and present three ways of combining this pulse sequence with ZTE imaging of the selected slice. With these tools, we demonstrate slice-selected 2D ex vivo imaging of the hardest tissues in the body at low field (260 mT) within clinically acceptable times.
Collapse
Affiliation(s)
| | - Fernando Galve
- Institute for Molecular Imaging and Instrumentation, Spanish National Research Council, 46022 Valencia, Spain
- Institute for Molecular Imaging and Instrumentation, Universitat Politècnica de València, 46022 Valencia, Spain
| | - José M. Algarín
- Institute for Molecular Imaging and Instrumentation, Spanish National Research Council, 46022 Valencia, Spain
- Institute for Molecular Imaging and Instrumentation, Universitat Politècnica de València, 46022 Valencia, Spain
| | - José M. Benlloch
- Institute for Molecular Imaging and Instrumentation, Spanish National Research Council, 46022 Valencia, Spain
- Institute for Molecular Imaging and Instrumentation, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Joseba Alonso
- Institute for Molecular Imaging and Instrumentation, Spanish National Research Council, 46022 Valencia, Spain
- Institute for Molecular Imaging and Instrumentation, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
8
|
Guallart‐Naval T, O'Reilly T, Algarín JM, Pellicer‐Guridi R, Vives‐Gilabert Y, Craven‐Brightman L, Negnevitsky V, Menküc B, Galve F, Stockmann JP, Webb A, Alonso J. Benchmarking the performance of a low-cost magnetic resonance control system at multiple sites in the open MaRCoS community. NMR IN BIOMEDICINE 2023; 36:e4825. [PMID: 36097704 PMCID: PMC10078257 DOI: 10.1002/nbm.4825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/15/2022] [Accepted: 08/26/2022] [Indexed: 05/15/2023]
Abstract
PURPOSE To describe the current properties and capabilities of an open-source hardware and software package that is being developed by many sites internationally with the aim of providing an inexpensive yet flexible platform for low-cost MRI. METHODS This article describes three different setups from 50 to 360 mT in different settings, all of which used the MaRCoS console for acquiring data, and different types of software interface (custom-built GUI or Pulseq overlay) to acquire it. RESULTS Images are presented both from phantoms and in vivo from healthy volunteers to demonstrate the image quality that can be obtained from the MaRCoS hardware/software interfaced to different low-field magnets. CONCLUSIONS The results presented here show that a number of different sequences commonly used in the clinic can be programmed into an open-source system relatively quickly and easily, and can produce good quality images even at this early stage of development. Both the hardware and software will continue to develop, and it is an aim of this article to encourage other groups to join this international consortium.
Collapse
Affiliation(s)
- Teresa Guallart‐Naval
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M)Spanish National Research Council (CSIC) and Universitat Politècnica de València (UPV)ValenciaSpain
- Tesoro Imaging S.L.ValenciaSpain
| | - Thomas O'Reilly
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - José M. Algarín
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M)Spanish National Research Council (CSIC) and Universitat Politècnica de València (UPV)ValenciaSpain
| | | | - Yolanda Vives‐Gilabert
- Intelligent Data Analysis Laboratory, Department of Electronic EngineeringUniversitat de ValènciaValenciaSpain
| | | | | | - Benjamin Menküc
- University of Applied Sciences and Arts DortmundDortmundGermany
| | - Fernando Galve
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M)Spanish National Research Council (CSIC) and Universitat Politècnica de València (UPV)ValenciaSpain
| | - Jason P. Stockmann
- Massachusetts General Hospital, A. A. Martinos Center for Biomedical ImagingCharlestownMAUSA
| | - Andrew Webb
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Joseba Alonso
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M)Spanish National Research Council (CSIC) and Universitat Politècnica de València (UPV)ValenciaSpain
| |
Collapse
|
9
|
Borreguero Morata J, González JM, Pallás E, Rigla JP, Algarín JM, Bosch R, Galve F, Grau‐Ruiz D, Pellicer R, Ríos A, Benlloch JM, Alonso J. Prepolarized MRI of hard tissues and solid-state matter. NMR IN BIOMEDICINE 2022; 35:e4737. [PMID: 35384092 PMCID: PMC9540585 DOI: 10.1002/nbm.4737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 05/25/2023]
Abstract
Prepolarized MRI (PMRI) is a long-established technique conceived to counteract the loss in signal-to-noise ratio (SNR) inherent to low-field MRI systems. When it comes to hard biological tissues and solid-state matter, PMRI is severely restricted by their ultra-short characteristic relaxation times. Here we demonstrate that efficient hard-tissue prepolarization is within reach with a special-purpose 0.26 T scanner designed for ex vivo dental MRI and equipped with suitable high-power electronics. We have characterized the performance of a 0.5 T prepolarizer module, which can be switched on and off in 200 μs. To this end, we have used resin, dental and bone samples, all with T 1 times of the order of 20 ms at our field strength. The measured SNR enhancement is in good agreement with a simple theoretical model, and deviations in extreme regimes can be attributed to mechanical vibrations due to the magnetic interaction between the prepolarization and main magnets.
Collapse
Affiliation(s)
| | | | - Eduardo Pallás
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M)Spanish National Research Council (CSIC) and Universitat Politècnica de València (UPV)ValenciaSpain
- Instituto de Instrumentación para Imagen MolecularCentro Mixto CSIC–Universitat Politècnica de ValènciaValenciaSpain
| | | | - José M. Algarín
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M)Spanish National Research Council (CSIC) and Universitat Politècnica de València (UPV)ValenciaSpain
- Instituto de Instrumentación para Imagen MolecularCentro Mixto CSIC–Universitat Politècnica de ValènciaValenciaSpain
| | | | - Fernando Galve
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M)Spanish National Research Council (CSIC) and Universitat Politècnica de València (UPV)ValenciaSpain
- Instituto de Instrumentación para Imagen MolecularCentro Mixto CSIC–Universitat Politècnica de ValènciaValenciaSpain
| | | | - Rubén Pellicer
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M)Spanish National Research Council (CSIC) and Universitat Politècnica de València (UPV)ValenciaSpain
- Asociación de investigación MPCSan SebastiánSpain
| | | | - José M. Benlloch
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M)Spanish National Research Council (CSIC) and Universitat Politècnica de València (UPV)ValenciaSpain
- Instituto de Instrumentación para Imagen MolecularCentro Mixto CSIC–Universitat Politècnica de ValènciaValenciaSpain
| | - Joseba Alonso
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M)Spanish National Research Council (CSIC) and Universitat Politècnica de València (UPV)ValenciaSpain
- Instituto de Instrumentación para Imagen MolecularCentro Mixto CSIC–Universitat Politècnica de ValènciaValenciaSpain
| |
Collapse
|
10
|
Guallart-Naval T, Algarín JM, Pellicer-Guridi R, Galve F, Vives-Gilabert Y, Bosch R, Pallás E, González JM, Rigla JP, Martínez P, Lloris FJ, Borreguero J, Marcos-Perucho Á, Negnevitsky V, Martí-Bonmatí L, Ríos A, Benlloch JM, Alonso J. Portable magnetic resonance imaging of patients indoors, outdoors and at home. Sci Rep 2022; 12:13147. [PMID: 35907975 PMCID: PMC9338984 DOI: 10.1038/s41598-022-17472-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/26/2022] [Indexed: 12/25/2022] Open
Abstract
Mobile medical imaging devices are invaluable for clinical diagnostic purposes both in and outside healthcare institutions. Among the various imaging modalities, only a few are readily portable. Magnetic resonance imaging (MRI), the gold standard for numerous healthcare conditions, does not traditionally belong to this group. Recently, low-field MRI technology companies have demonstrated the first decisive steps towards portability within medical facilities and vehicles. However, these scanners' weight and dimensions are incompatible with more demanding use cases such as in remote and developing regions, sports facilities and events, medical and military camps, or home healthcare. Here we present in vivo images taken with a light, small footprint, low-field extremity MRI scanner outside the controlled environment provided by medical facilities. To demonstrate the true portability of the system and benchmark its performance in various relevant scenarios, we have acquired images of a volunteer's knee in: (i) an MRI physics laboratory; (ii) an office room; (iii) outside a campus building, connected to a nearby power outlet; (iv) in open air, powered from a small fuel-based generator; and (v) at the volunteer's home. All images have been acquired within clinically viable times, and signal-to-noise ratios and tissue contrast suffice for 2D and 3D reconstructions with diagnostic value. Furthermore, the volunteer carries a fixation metallic implant screwed to the femur, which leads to strong artifacts in standard clinical systems but appears sharp in our low-field acquisitions. Altogether, this work opens a path towards highly accessible MRI under circumstances previously unrealistic.
Collapse
Affiliation(s)
| | - José M Algarín
- Institute for Molecular Imaging and Instrumentation, Spanish National Research Council, 46022, Valencia, Spain
- Institute for Molecular Imaging and Instrumentation, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Rubén Pellicer-Guridi
- PhysioMRI Tech S.L., 46022, Valencia, Spain
- Asociación de investigación MPC, 20018, San Sebastián, Spain
| | - Fernando Galve
- Institute for Molecular Imaging and Instrumentation, Spanish National Research Council, 46022, Valencia, Spain
- Institute for Molecular Imaging and Instrumentation, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Yolanda Vives-Gilabert
- PhysioMRI Tech S.L., 46022, Valencia, Spain
- Intelligent Data Analysis Laboratory, Department of Electronic Engineering, Universitat de València, 46100, Burjassot, Spain
| | | | - Eduardo Pallás
- Institute for Molecular Imaging and Instrumentation, Spanish National Research Council, 46022, Valencia, Spain
- Institute for Molecular Imaging and Instrumentation, Universitat Politècnica de València, 46022, Valencia, Spain
| | | | | | | | | | | | | | | | - Luis Martí-Bonmatí
- Medical Imaging Department, Hospital Universitari i Politècnic La Fe, 46026, Valencia, Spain
| | | | - José M Benlloch
- Institute for Molecular Imaging and Instrumentation, Spanish National Research Council, 46022, Valencia, Spain
- Institute for Molecular Imaging and Instrumentation, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Joseba Alonso
- Institute for Molecular Imaging and Instrumentation, Spanish National Research Council, 46022, Valencia, Spain.
- Institute for Molecular Imaging and Instrumentation, Universitat Politècnica de València, 46022, Valencia, Spain.
| |
Collapse
|
11
|
Grau-Ruiz D, Rigla JP, Pallás E, Algarín JM, Borreguero J, Bosch R, López-Comazzi G, Galve F, Díaz-Caballero E, Gramage C, González JM, Pellicer R, Ríos A, Benlloch JM, Alonso J. Magneto-stimulation limits in medical imaging applications with rapid field dynamics. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac515c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/02/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. The goal of this work is to extend previous peripheral nerve stimulation (PNS) studies to scenarios relevant to magnetic particle imaging (MPI) and low-field magnetic resonance imaging (MRI), where field dynamics can evolve at kilo-hertz frequencies. Approach. We have constructed an apparatus for PNS threshold determination on a subject’s limb, capable of narrow and broad-band magnetic stimulation with pulse characteristic times down to 40 μs. Main result. From a first set of measurements on 51 volunteers, we conclude that the PNS dependence on pulse frequency/rise-time is compatible with traditional stimulation models where nervous responses are characterized by a rheobase and a chronaxie. Additionally, we have extended pulse length studies to these fast timescales and confirm thresholds increase significantly as trains transition from tens to a few pulses. We also look at the influence of field spatial distribution on PNS effects, and find that thresholds are higher in an approximately linearly inhomogeneous field (relevant to MRI) than in a rather homogeneous distribution (as in MPI). Significance. PNS constrains the clinical performance of MRI and MPI systems. Extensive magneto-stimulation studies have been carried out recently in the field of MPI, where typical operation frequencies range from single to tens of kilo-hertz. However, PNS literature is scarce for MRI in this fast regime, relevant to small (low inductance) dedicated MRI setups, and where the resonant character of MPI coils prevents studies of broad-band stimulation pulses. This work advances in this direction.
Collapse
|
12
|
Chandarana H, Bagga B, Huang C, Dane B, Petrocelli R, Bruno M, Keerthivasan M, Grodzki D, Block KT, Stoffel D, Sodickson DK. Diagnostic abdominal MR imaging on a prototype low-field 0.55 T scanner operating at two different gradient strengths. Abdom Radiol (NY) 2021; 46:5772-5780. [PMID: 34415411 DOI: 10.1007/s00261-021-03234-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE To develop a protocol for abdominal imaging on a prototype 0.55 T scanner and to benchmark the image quality against conventional 1.5 T exam. METHODS In this prospective IRB-approved HIPAA-compliant study, 10 healthy volunteers were recruited and imaged. A commercial MRI system was modified to operate at 0.55 T (LF) with two different gradient performance levels. Each subject underwent non-contrast abdominal examinations on the 0.55 T scanner utilizing higher gradients (LF-High), lower adjusted gradients (LF-Adjusted), and a conventional 1.5 T scanner. The following pulse sequences were optimized: fat-saturated T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and Dixon T1-weighted imaging (T1WI). Three readers independently evaluated image quality in a blinded fashion on a 5-point Likert scale, with a score of 1 being non-diagnostic and 5 being excellent. An exact paired sample Wilcoxon signed-rank test was used to compare the image quality. RESULTS Diagnostic image quality (overall image quality score ≥ 3) was achieved at LF in all subjects for T2WI, DWI, and T1WI with no more than one unit lower score than 1.5 T. The mean difference in overall image quality score was not significantly different between LF-High and LF-Adjusted for T2WI (95% CI - 0.44 to 0.44; p = 0.98), DWI (95% CI - 0.43 to 0.36; p = 0.92), and for T1 in- and out-of-phase imaging (95%C I - 0.36 to 0.27; p = 0.91) or T1 fat-sat (water only) images (95% CI - 0.24 to 0.18; p = 1.0). CONCLUSION Diagnostic abdominal MRI can be performed on a prototype 0.55 T scanner, either with conventional or with reduced gradient performance, within an acquisition time of 10 min or less.
Collapse
Affiliation(s)
- Hersh Chandarana
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, 660 First Ave, New York, NY, 10016, USA.
| | - Barun Bagga
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, 660 First Ave, New York, NY, 10016, USA
| | - Chenchan Huang
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, 660 First Ave, New York, NY, 10016, USA
| | - Bari Dane
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, 660 First Ave, New York, NY, 10016, USA
| | - Robert Petrocelli
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, 660 First Ave, New York, NY, 10016, USA
| | - Mary Bruno
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, 660 First Ave, New York, NY, 10016, USA
| | | | | | - Kai Tobias Block
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, 660 First Ave, New York, NY, 10016, USA
| | - David Stoffel
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, 660 First Ave, New York, NY, 10016, USA
| | - Daniel K Sodickson
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, 660 First Ave, New York, NY, 10016, USA
| |
Collapse
|
13
|
The Chairside Periodontal Diagnostic Toolkit: Past, Present, and Future. Diagnostics (Basel) 2021; 11:diagnostics11060932. [PMID: 34067332 PMCID: PMC8224643 DOI: 10.3390/diagnostics11060932] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 12/22/2022] Open
Abstract
Periodontal diseases comprise a group of globally prevalent, chronic oral inflammatory conditions caused by microbial dysbiosis and the host immune response. These diseases specifically affect the tooth-supporting tissues (i.e., the periodontium) but are also known to contribute to systemic inflammation. If left untreated, periodontal diseases can ultimately progress to tooth loss, lead to compromised oral function, and negatively impact the overall quality of life. Therefore, it is important for the clinician to accurately diagnose these diseases both early and accurately chairside. Currently, the staging and grading of periodontal diseases are based on recording medical and dental histories, thorough oral examination, and multiple clinical and radiographic analyses of the periodontium. There have been numerous attempts to improve, automate, and digitize the collection of this information with varied success. Recent studies focused on the subgingival microbiome and the host immune response suggest there is an untapped potential for non-invasive oral sampling to assist clinicians in the chairside diagnosis and, potentially, prognosis. Here, we review the available toolkit available for diagnosing periodontal diseases, discuss commercially available options, and highlight the need for collaborative research initiatives and state-of-the-art technology development across disciplines to overcome the challenges of rapid periodontal disease diagnosis.
Collapse
|