1
|
Zhai Q, Song L, Huang S, Ji X, Yu Y, Ye J, Wei H, Xu W, Hou M. Removal mechanism of Microcystis aeruginosa in Fe 2+/sodium percarbonate and Fe 2+/sodium persulfate advanced oxidation-flocculation system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40911-40918. [PMID: 36622614 DOI: 10.1007/s11356-023-25163-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Advanced oxidation process (AOPs) can be used for the treatment of harmful algal blooms (HABs). In this study, two systems of Fe2+/sodium percarbonate (Fe2+/SPC system) and Fe2+/sodium persulfate (Fe2+/PS system) were established to explore the removal mechanism of Microcystis aeruginosa (M. aeruginosa). The results indicated that the Fe2+/SPC system catalyzed H2O2 to generate a large amount of [Formula: see text] for oxidation by Fe2+ and formed Fe3+ to promote the flocculation of M. aeruginosa. The persulfate was activated by Fe2+ to generate [Formula: see text] with super-oxidizing properties, and Fe3+ was generated to realize the oxidation and flocculation of M. aeruginosa in the Fe2+/PS system. Compared with the traditional method in which the pre-oxidation and flocculation processes are carried out separately, the method in this study effectively improves the utilization rate of the flocculant and the removal effect of M. aeruginosa. The absolute value of zeta potential of Fe2+/PS system (|ζ|= 0.808 mV) was significantly lower than that of Fe2+/SPC system (|ζ|= 21.4 mV) (P < 0.05), which indicated that Fe2+/PS system was more favorable for the flocculation of M. aeruginosa cells than the Fe2+/SPC system.
Collapse
Affiliation(s)
- Qingyun Zhai
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| | - Lili Song
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| | - Saihua Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, People's Republic of China
| | - Xiyan Ji
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China.
| | - Yueshu Yu
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| | - Jing Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| | - Hua Wei
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| | - Wenwu Xu
- School of Railway Transportation, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| | - Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| |
Collapse
|
2
|
Fu D, Kurniawan TA, Lin L, Li Y, Avtar R, Dzarfan Othman MH, Li F. Arsenic removal in aqueous solutions using FeS 2. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 286:112246. [PMID: 33667817 DOI: 10.1016/j.jenvman.2021.112246] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/04/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
This study tested the technical feasibility of pyrite and/or persulfate oxidation system for arsenic (As) removal from aqueous solutions. The effects of persulfate on As removal by the pyrite in the integrated treatment were also investigated. Prior to the persulfate addition into the reaction system, the physico-chemical interactions between As and the pyrite alone in aqueous solutions were explored in batch studies. The adsorption mechanisms of As by the adsorbent were also presented. At the same As concentration of 5 mg/L, it was found that As(III) attained a longer equilibrium time (8 h) than As(V) (2 h), while the pyrite worked effectively at pH ranging from 6 to 11. At optimum conditions (0.25 g/L of pyrite, pH 8.0 and 5 mg/L of As(III) concentration), the addition of persulfate (0.5 mM) into the reaction promoted a complete removal of arsenic from the solutions. Consequently, this enabled the treated effluents to meet the arsenic maximum contaminant limit (MCL) of <10 μg/L according to the World Health Organization (WHO)'s requirements. The redox mechanisms, which involved electron transfer from the S22- of the pyrite to Fe3+, supply Fe2+ for persulfate decomposition, oxidizing As(III) to As(V). The sulfur species played roles in the redox cycle of the Fe3+/Fe2+ of the pyrite by giving its electrons, while the As(III) oxidation to As(V) was attributed to the pyrite. Overall, this work reveals the applicability of the pyrite as an adsorbent for water treatment and the importance of persulfate addition to promote a complete As removal from aqueous solutions.
Collapse
Affiliation(s)
- Dun Fu
- National Engineering Research Center of Coal Mine Water Hazard Controlling, School of Resources and Civil Engineering, Suzhou University, Suzhou 234000, Anhui, PR China; College of the Environment & Ecology, Xiamen University, Xiamen, 361102, Fujian, PR China
| | | | - Lan Lin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Yaqiong Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, PR China
| | - Ram Avtar
- Faculty of Environment Earth Sciences, Hokkaido University, Sapporo, 0600810, Japan
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Feng Li
- National Engineering Research Center of Coal Mine Water Hazard Controlling, School of Resources and Civil Engineering, Suzhou University, Suzhou 234000, Anhui, PR China
| |
Collapse
|