1
|
Hristov PR, Hristakov IS, Atanasov AZ, Zhelyazkov PA. Effectiveness of glycerin-oxalic acid strips and essential oils in controlling Varroa destructor in honeybee. VET MED-CZECH 2025; 70:101-109. [PMID: 40248330 PMCID: PMC12001873 DOI: 10.17221/94/2024-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/12/2025] [Indexed: 04/19/2025] Open
Abstract
The decline in the bee colony strength due to high levels of Varroa destructor infestations necessitates the development of new control methods. This study evaluates the effectiveness of glycerin-oxalic acid strips and essential oils in managing Varroa destructor. The experiment was conducted in 2022 at the experimental apiary in Debelec, part of the Institute of Animal Husbandry in Kostinbrod. Six experimental groups, each treated with a different preparation, were compared to a control group of untreated colonies. Treatments included Beevital Hiveclean (20 ml per colony), Varro Red (2 ml per frame), ammonium nitrate strips (1.3 mm), glycerin-oxalic acid strips (1.3 mm), and glycerin-oxalic acid strips of paper-cellulose (2.3 mm) or cellulose-cotton (2.3 mm). The control group remained untreated. The glycerin-oxalic acid strips made of cellulose and cotton (2.3 mm) showed the highest efficacy, reducing the mite infestation by 17.79% compared to the control. The glycerin-oxalic acid strips of paper-cellulose (2.3 mm) were also effective, achieving a 17.05% reduction in mite levels. These results provide valuable insights for beekeepers seeking alternative and sustainable methods for controlling Varroa destructor infestations.
Collapse
Affiliation(s)
- Plamen Rangelov Hristov
- Agricultural Machinery Department, Agrarian and Industrial Faculty, University of Ruse, Ruse, Bulgaria
| | | | | | | |
Collapse
|
2
|
Bertola M, Mutinelli F. Sensitivity and Resistance of Parasitic Mites ( Varroa destructor, Tropilaelaps spp. and Acarapis woodi) Against Amitraz and Amitraz-Based Product Treatment: A Systematic Review. INSECTS 2025; 16:234. [PMID: 40266753 PMCID: PMC11942636 DOI: 10.3390/insects16030234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/05/2025] [Accepted: 02/18/2025] [Indexed: 04/25/2025]
Abstract
Resistance to amitraz in Varroa destructor mites poses a significant challenge to global beekeeping, leading to the declining efficacy of treatments and increased colony losses. This study aims to comprehensively map, characterize, and analyze the status of amitraz efficacy and resistance in Varroa and other parasitic mites such as Tropilaelaps spp. and Acarapis woodi. A systematic review, following PRISMA 2020 guidelines, examined 74 studies, revealing substantial variability in experimental protocols, mite origins, and environmental factors, all of which impacted toxicity assessments. These findings highlight the urgent need for standardized methodologies to ensure consistency and reliability. Resistance ratios (RR) and indices (RI) showed significant geographical variation, reflecting localized resistance development. Laboratory studies highlighted inconsistencies in detecting resistance, underscoring the importance of combining bioassays, molecular diagnostics, and field efficacy tests. Understanding the genetic and physiological mechanisms driving amitraz resistance, as well as their prevalence, is vital to devising sustainable management strategies. Establishing national monitoring programs and revising testing protocols are pivotal steps toward ensuring the continued effectiveness of acaricides. These measures, combined with coordinated efforts by researchers, beekeepers, and policymakers, are essential to safeguarding global honey bee populations and supporting the long-term sustainability of apiculture.
Collapse
Affiliation(s)
- Michela Bertola
- NRL for Honey Bee Health, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy;
| | | |
Collapse
|
3
|
Bahreini R, González-Cabrera J, Hernández-Rodríguez CS, Moreno-Martí S, Muirhead S, Labuschagne RB, Rueppell O. Arising amitraz and pyrethroids resistance mutations in the ectoparasitic Varroa destructor mite in Canada. Sci Rep 2025; 15:1587. [PMID: 39794392 PMCID: PMC11724071 DOI: 10.1038/s41598-025-85279-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
The ectoparasitic mite Varroa destructor remains a great threat for the beekeeping industry, for example contributing to excessive winter colony loss in Canada. For decades, beekeepers have sequentially used the registered synthetic varroacides tau-fluvalinate, coumaphos, amitraz, and flumethrin, leading to the risk of resistance evolution in the mites. In addition to the widespread resistance to coumaphos and pyrethroids, a decline in amitraz efficacy has recently been reported in numerous beekeeping regions in Canada. The goals of this study were to assess the evolution of resistance to amitraz in Canadian mite populations and to evaluate the presence and incidence of mutations previously associated with resistance to amitraz and pyrethroids in V. destructor. Our bioassay results confirmed the presence of amitraz-resistant mites in the population of Alberta. These phenotypic results were complemented by targeted genotyping of the octopamine receptor gene Octβ2R which revealed the presence of the mutation Y215H in 90% of tested apiaries with local allele frequencies ranging from 5 to 95%. The phenotypic resistance showed a significant correlation with the presence of this mutation across apiaries. In parallel, the L925I and L925M mutations in the voltage-gated sodium channel were identified in 100% of the tested apiaries with frequencies ranging from 33 to 97%, suggesting that resistance to pyrethroids remains widespread. These results support the notion that the practice of relying on a single treatment for a prolonged period can increase rates of resistance to current varroacides. Our findings suggest the need for large-scale resistance monitoring via genotyping to provide timely information to beekeepers and regulators. This will enable them to make an effective management plan, including rotation of available treatments to suppress or at least delay the evolution of resistance in V. destructor populations.
Collapse
Affiliation(s)
- Rassol Bahreini
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Joel González-Cabrera
- Institute BIOTECMED, Universitat de València, Valencia, Spain
- Department of Genetics, Universitat de València, Valencia, Spain
| | - Carmen Sara Hernández-Rodríguez
- Institute BIOTECMED, Universitat de València, Valencia, Spain
- Department of Microbiology and Ecology, Universitat de València, Valencia, Spain
| | - Sara Moreno-Martí
- Institute BIOTECMED, Universitat de València, Valencia, Spain
- Department of Genetics, Universitat de València, Valencia, Spain
| | - Samantha Muirhead
- Plant and Bee Health Surveillance Section, Alberta Agriculture and Irrigation, Edmonton, AB, Canada
| | - Renata B Labuschagne
- Technology Transfer Program, Alberta Beekeepers Commission, Edmonton, AB, Canada
| | - Olav Rueppell
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Wu J, Liu F, Sun J, Wei Q, Kang W, Wang F, Zhang C, Zhao M, Xu S, Han B. Toxic effects of acaricide fenazaquin on development, hemolymph metabolome, and gut microbiome of honeybee (Apis mellifera) larvae. CHEMOSPHERE 2024; 358:142207. [PMID: 38697560 DOI: 10.1016/j.chemosphere.2024.142207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/06/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Fenazaquin, a potent insecticide widely used to control phytophagous mites, has recently emerged as a potential solution for managing Varroa destructor mites in honeybees. However, the comprehensive impact of fenazaquin on honeybee health remains insufficiently understood. Our current study investigated the acute and chronic toxicity of fenazaquin to honeybee larvae, along with its influence on larval hemolymph metabolism and gut microbiota. Results showed that the acute median lethal dose (LD50) of fenazaquin for honeybee larvae was 1.786 μg/larva, and the chronic LD50 was 1.213 μg/larva. Although chronic exposure to low doses of fenazaquin exhibited no significant effect on larval development, increasing doses of fenazaquin resulted in significant increases in larval mortality, developmental time, and deformity rates. At the metabolic level, high doses of fenazaquin inhibited nucleotide, purine, and lipid metabolism pathways in the larval hemolymph, leading to energy metabolism disorders and physiological dysfunction. Furthermore, high doses of fenazaquin reduced gut microbial diversity and abundance, characterized by decreased relative abundance of functional gut bacterium Lactobacillus kunkeei and increased pathogenic bacterium Melissococcus plutonius. The disrupted gut microbiota, combined with the observed gut tissue damage, could potentially impair food digestion and nutrient absorption in the larvae. Our results provide valuable insights into the complex and diverse effects of fenazaquin on honeybee larvae, establishing an important theoretical basis for applying fenazaquin in beekeeping.
Collapse
Affiliation(s)
- Jiangli Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fengying Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiajing Sun
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qiaohong Wei
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Weipeng Kang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Feng Wang
- Institute of Horticultural Research, Shanxi Academy of Agricultural Sciences, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Chenhuan Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Meijiao Zhao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shufa Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Bin Han
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
5
|
Jack CJ, Boncristiani H, Prouty C, Schmehl DR, Ellis JD. Evaluating the seasonal efficacy of commonly used chemical treatments on Varroa destructor (Mesostigmata: Varroidae) population resurgence in honey bee colonies. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:11. [PMID: 38805652 PMCID: PMC11132127 DOI: 10.1093/jisesa/ieae011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/28/2023] [Accepted: 01/29/2024] [Indexed: 05/30/2024]
Abstract
The purpose of this research was to determine how common chemical treatments influence Varroa destructor (Anderson and Trueman) population resurgence rates (defined as time posttreatment for mite populations to reach 3 mites/100 adult bees) in managed honey bee (Apis mellifera L.) colonies seasonally. We conducted 2 experiments that followed the same basic protocol to address this purpose. We established 6 treatment groups in Experiment 1 in the fall of 2014: untreated control, Apivar, Apistan, CheckMite+, ApiLifeVar, and Mite Away II applied to 10 colonies per treatment. In Experiment 2, we applied 8 chemical treatments to each of 4 seasonal (spring, summer, fall, and winter) cohorts of honey bee colonies to determine how mite populations are influenced by the treatments. The treatments/formulations tested were Apivar, Apistan, Apiguard, MAQS, CheckMite+, oxalic acid (dribble), oxalic acid (shop towels), and amitraz (shop towels soaked in Bovitraz). In Experiment 1, Apivar and Mite Away II were able to delay V. destructor resurgence for 2 and 6 months, respectively. In Experiment 2, Apiguard, MAQS, oxalic acid (dribble), and Bovitraz treatments were effective at delaying V. destructor resurgence for at least 2 months during winter and spring. Only the Bovitraz and MAQS treatments were effective at controlling V. destructor in the summer and fall. Of the 2 amitraz-based treatments, the off-label Bovitraz treatment was the only treatment to reduce V. destructor populations in every season. The data gathered through this study allow for the refinement of treatment recommendations for V. destructor, especially regarding the seasonal efficacy of each miticide and the temporal efficacy posttreatment.
Collapse
Affiliation(s)
- Cameron J Jack
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Humberto Boncristiani
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
- Inside The Hive Media & Consulting Inc., Odenton, MD, USA
| | - Cody Prouty
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
- Department of Entomology, University of Minnesota, St. Paul, MN, USA
| | - Daniel R Schmehl
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - James D Ellis
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Bahreini R, Docherty C, Feindel D, Muirhead S. Comparing the efficacy of synthetic Varroacides and Varroa destructor phenotypic resistance using Apiarium and Mason jar bioassay techniques. PEST MANAGEMENT SCIENCE 2024; 80:1577-1592. [PMID: 37974358 DOI: 10.1002/ps.7891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Varroa mite, Varroa destructor, is a major threat for honey bee, Apis mellifera, colonies. Beekeepers have used synthetic Varroacides against Varroa mite for decades, but resistance to organophosphates, pyrethroids and formamidine has been reported in many locations worldwide. The goals of this study were to develop a reliable bioassay to assess efficacy and phenotypic resistance to commercial Varroacides. In this study, efficacy and Varroa resistance was evaluated using the Apiarium technique in comparison to the Mason jar method. RESULTS Among tested Varroacides, a high efficacy (89%) for Apivar was identified when compared to Bayvarol (58%), Apistan (44%) and CheckMite (6%), in a 24 h assessment. We also found that CheckMite was toxic to bees in the Mason jar method. In addition, the Apiarium technique revealed a case of phenotypic resistance to Bayvarol, Apistan and CheckMite in the mite population evaluated. CONCLUSION A laboratory protocol was developed using the Apiarium method to evaluate Apivar efficacy. Collectively, the findings indicated that the Apiarium methodology provided a reliable technique to measure Varroacide efficacy and determine the presence of phenotypic resistance in V. destructor. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Rassol Bahreini
- Plant and Bee Health Surveillance Section, Alberta Agriculture and Irrigation, Edmonton, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Cassandra Docherty
- Plant and Bee Health Surveillance Section, Alberta Agriculture and Irrigation, Edmonton, Canada
| | - David Feindel
- Plant and Bee Health Surveillance Section, Alberta Agriculture and Irrigation, Edmonton, Canada
| | - Samantha Muirhead
- Plant and Bee Health Surveillance Section, Alberta Agriculture and Irrigation, Edmonton, Canada
| |
Collapse
|
7
|
Bartlett LJ, Baker C, Bruckner S, Delaplane KS, Hackmeyer EJ, Phankaew C, Williams GR, Berry JA. No evidence to support the use of glycerol-oxalic acid mixtures delivered via paper towel for controlling Varroa destructor (Mesostigmata: Varroidae) mites in the Southeast United States. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:18. [PMID: 38055939 DOI: 10.1093/jisesa/iead097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/15/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
A significant amount of researcher and practitioner effort has focused on developing new chemical controls for the parasitic Varroa destructor mite in beekeeping. One outcome of that has been the development and testing of "glycerol-oxalic acid" mixtures to place in colonies for extended periods of time, an off-label use of the otherwise legal miticide oxalic acid. The majority of circulated work on this approach was led by practitioners and published in nonacademic journals, highlighting a lack of effective partnership between practitioners and scientists and a possible failure of the extension mandate in beekeeping in the United States. Here, we summarize the practitioner-led studies we could locate and partner with a commercial beekeeper in the Southeast of the United States to test the "shop towel-oxalic acid-glycerol" delivery system developed by those practitioners. Our study, using 129 commercial colonies between honey flows in 2017 split into 4 treatment groups, showed no effectiveness in reducing Varroa parasitism in colonies exposed to oxalic acid-glycerol shop towels. We highlight the discrepancy between our results and those circulated by practitioners, at least for the Southeast, and the failure of extension to support practitioners engaged in research.
Collapse
Affiliation(s)
- Lewis J Bartlett
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
- Center for the Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Christian Baker
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Selina Bruckner
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Keith S Delaplane
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Ethan J Hackmeyer
- Center for the Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Chama Phankaew
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Chatuchuk, Bangkok 10900, Thailand
| | - Geoffrey R Williams
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Jennifer A Berry
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Robi DT, Temteme S, Aleme M, Bogale A, Getachew A, Mendesil E. Epidemiology, factors influencing prevalence and level of varroosis infestation ( Varroa destructor) in honeybee ( Apis mellifera) colonies in different agroecologies of Southwest Ethiopia. Parasite Epidemiol Control 2023; 23:e00325. [PMID: 37711152 PMCID: PMC10498395 DOI: 10.1016/j.parepi.2023.e00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/18/2023] [Accepted: 09/02/2023] [Indexed: 09/16/2023] Open
Abstract
Little information is available on the epidemiology of varroosis caused by Varroa mite, Varroa destructor infestation in Ethiopia, although it is a devastating honeybee disease that results in significant economic losses in beekeeping. Therefore, between October 2021 and October 2022, a cross-sectional study was carried out in different agroecology zones in Southwest Ethiopia to determine the prevalence and associated risk factors for varroosis, as well as the effects of this disease on honeybee colonies and honey production. A multivariate logistic regression analysis was performed to identify possible risk factors for the prevalence of V. destructor. A total of 384 adult honeybee and worker or drone brood samples were collected from honeybee colonies and examined using standard diagnostic techniques in the laboratory. The result shows that the prevalence of V. destructor was found to be 39.3% (95% CI 34.44-44.21) and 43.2% (38.27-48.18) in adult honeybees and brood, respectively. The major risk factors for the prevalence of V. destructor in the study areas included agroecology (OR = 5.2, 95% CI 1.75-14.85), type of hive (OR = 2.9, 95% CI 1.17-17.03), management system (OR = 4.3, 95% CI 1.23-14.70), and colony management (OR = 3.5, 95% CI 1.31-9.14). The lower level of colony infestation in adult bees and brood was measured as 1.97 ± 0.14 and 3.19 ± 0.25, respectively. Season, colony status, colony management, and agroecology were among the determinant factors of the level of varroa mite infestation in adult bees and brood. The results of the study demonstrated that honey production losses are largely attributable to V. destructor infestation. Therefore, it is critical to inform the community about the effects of V. destructor on honey production and develop and implement effective management strategies for this disease. In addition, further research should be done to identify and isolate additional factors that contribute to varroosis in honeybees in different regions.
Collapse
Affiliation(s)
- Dereje Tulu Robi
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, P.O. Box 34, Tepi, Ethiopia
| | - Shiferaw Temteme
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, P.O. Box 34, Tepi, Ethiopia
| | - Melkam Aleme
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, P.O. Box 34, Tepi, Ethiopia
| | - Ararsa Bogale
- Ethiopian Institute of Agricultural Research, Holeta Agricultural Research Center, P.O. Box 2003, Holeta, Ethiopia
| | - Awraris Getachew
- Department of Animal Sciences, College of Agriculture and Environmental Sciences, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
| | - Esayas Mendesil
- Department of Horticulture and Plant Sciences, Jimma University College of Agriculture & Veterinary Medicine, P.O. Box 307, Jimma, Ethiopia
| |
Collapse
|
9
|
Dawdani S, O'Neill M, Castillo C, Sámano JEM, Higo H, Ibrahim A, Pernal SF, Plettner E. Effects of dialkoxybenzenes against Varroa destructor and identification of 1-allyloxy-4-propoxybenzene as a promising acaricide candidate. Sci Rep 2023; 13:11195. [PMID: 37433810 DOI: 10.1038/s41598-023-38187-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/04/2023] [Indexed: 07/13/2023] Open
Abstract
The honey bee is responsible for pollination of a large proportion of crop plants, but the health of honey bee populations has been challenged by the parasitic mite Varroa destructor. Mite infestation is the main cause of colony losses during the winter months, which causes significant economic challenges in apiculture. Treatments have been developed to control the spread of varroa. However, many of these treatments are no longer effective due to acaricide resistance. In a search of varroa-active compounds, we tested the effect of dialkoxybenzenes on the mite. A structure-activity relationship revealed that 1-allyloxy-4-propoxybenzene is most active of a series of dialkoxybenzenes tested. We found that three compounds (1-allyloxy-4-propoxybenzene, 1,4-diallyloxybenzene and 1,4-dipropoxybenzene) cause paralysis and death of adult varroa mites, whereas the previously discovered compound, 1,3-diethoxybenzene, which alters host choice of adult mites in certain conditions, did not cause paralysis. Since paralysis can be caused by inhibition of acetylcholinesterase (AChE), a ubiquitous enzyme in the nervous system of animals, we tested dialkoxybenzenes on human, honey bee and varroa AChE. These tests revealed that 1-allyloxy-4-propoxybenzene had no effects on AChE, which leads us to conclude that 1-allyloxy-4-propoxybenzene does not exert its paralytic effect on mites through AChE. In addition to paralysis, the most active compounds affected the ability of the mites to find and remain at the abdomen of host bees provided during assays. A test of 1-allyloxy-4-propoxybenzene in the field, during the autumn of 2019 in two locations, showed that this compound has promise in the treatment of varroa infestations.
Collapse
Affiliation(s)
- Soniya Dawdani
- Department of Chemistry, Simon Fraser University, 8888 Univ. Dr., Burnaby, BC, V5A 1S6, Canada
| | - Marissa O'Neill
- Department of Chemistry, Simon Fraser University, 8888 Univ. Dr., Burnaby, BC, V5A 1S6, Canada
| | - Carlos Castillo
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, P.O. Box 29, Beaverlodge, AB, T0H 0C0, Canada
| | - Jorge E Macias Sámano
- Department of Chemistry, Simon Fraser University, 8888 Univ. Dr., Burnaby, BC, V5A 1S6, Canada
| | - Heather Higo
- Department of Chemistry, Simon Fraser University, 8888 Univ. Dr., Burnaby, BC, V5A 1S6, Canada
| | - Abdullah Ibrahim
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, P.O. Box 29, Beaverlodge, AB, T0H 0C0, Canada
| | - Stephen F Pernal
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, P.O. Box 29, Beaverlodge, AB, T0H 0C0, Canada
| | - Erika Plettner
- Department of Chemistry, Simon Fraser University, 8888 Univ. Dr., Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
10
|
Chen L, Pan M, Hu D. An overview on the green synthesis and removal methods of pyridaben. Front Chem 2022; 10:975491. [PMID: 35910743 PMCID: PMC9329628 DOI: 10.3389/fchem.2022.975491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Pyridaben is an acaricide widely used around the world to control phytophagous mites, white flies, aphids, and thrips. It is highly toxic to nontarget organisms such as predatory mites, bees, and fishes. Therefore, the occurrence and removal of pyridaben in food and the environment are worthy of concern. This mini-review focuses on pyridaben residue levels in crops, aquatic systems, and soils, as well as the green synthesis and removal of pyridaben. During the period of 2010–2022, pyridaben was reported in monitoring studies on fruits, vegetables, herbs, bee products, aquatic systems, and soils. Vegetable and agricultural soil samples exhibited the highest detection rates and residue levels. One-pot synthesis offers a green chemistry and sustainable alternative for the synthesis of pyridaben. Among traditional home treatments, peeling is the most effective way to remove pyridaben from crops. Magnetic solid-phase extraction technology has emerged as a powerful tool for the adsorption and separation of pyridaben. Photocatalytic methods using TiO2 as a catalyst were developed as advanced oxidation processes for the degradation of pyridaben in aqueous solutions. Current gaps in pyridaben removal were proposed to provide future development directions for minimizing the exposure risk of pyridaben residues to human and nontarget organisms.
Collapse
|
11
|
Bahreini R, Nasr M, Docherty C, Muirhead S, de Herdt O, Feindel D. Miticidal activity of fenazaquin and fenpyroximate against Varroa destructor, an ectoparasite of Apis mellifera. PEST MANAGEMENT SCIENCE 2022; 78:1686-1697. [PMID: 34994089 PMCID: PMC9303763 DOI: 10.1002/ps.6788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/09/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The Varroa mite (Varroa destructor) is an ectoparasite that can affect the health of honey bees (Apis mellifera) and contributes to the loss of colony productivity. The limited availability of Varroacides with different modes of action in Canada has resulted in the development of chemical resistance in mite populations. Therefore, an urgent need to evaluate new potential miticides that are safe for bees and exhibit high efficacy against Varroa exists. In this study, the acute contact toxicity of 26 active ingredients (19 chemical classes), already available on the market, was evaluated on V. destructor and A. mellifera under laboratory conditions using an apiarium bioassay. In this assay, groups of Varroa-infested worker bees were exposed to different dilutions of candidate compounds. In semi-field trials, Varroa-infested honey bees were randomly treated with four vetted candidate compounds from the apiarium assay in mini-colonies. RESULTS Among tested compounds, fenazaquin (quinazoline class) and fenpyroximate (pyrazole class) had higher mite mortality and lower bee mortality over a 24 h exposure period in apiariums. These two compounds, plus spirotetramat and spirodiclofen, were selected for semi-field evaluation based on the findings of the apiarium bioassay trials and previous laboratory studies. Consistent with the apiarium bioassay, semi-field results showed fenazaquin and fenpyroximate had high efficacy (>80%), reducing Varroa abundance by 80% and 68%, respectively. CONCLUSION These findings suggest that fenazaquin would be an effective Varroacide, along with fenpyroximate, which was previously registered for in-hive use as Hivastan. Both compounds have the potential to provide beekeepers with an alternative option for managing Varroa mites in honey bee colonies. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Rassol Bahreini
- Plant and Bee Health Surveillance SectionAlberta Agriculture and ForestryEdmontonABCanada
| | - Medhat Nasr
- Plant and Bee Health Surveillance SectionAlberta Agriculture and ForestryEdmontonABCanada
| | - Cassandra Docherty
- Plant and Bee Health Surveillance SectionAlberta Agriculture and ForestryEdmontonABCanada
| | - Samantha Muirhead
- Plant and Bee Health Surveillance SectionAlberta Agriculture and ForestryEdmontonABCanada
| | - Olivia de Herdt
- Plant and Bee Health Surveillance SectionAlberta Agriculture and ForestryEdmontonABCanada
| | - David Feindel
- Plant and Bee Health Surveillance SectionAlberta Agriculture and ForestryEdmontonABCanada
| |
Collapse
|
12
|
Bartlett LJ. Frontiers in effective control of problem parasites in beekeeping. Int J Parasitol Parasites Wildl 2022; 17:263-272. [PMID: 35309040 PMCID: PMC8924282 DOI: 10.1016/j.ijppaw.2022.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022]
Abstract
Demand for better control of certain parasites in managed western honey bees (Apis mellifera L.) remains apparent amongst beekeepers in both Europe and North America, and is of widespread public, scientific, and agricultural concern. Academically, interest from numerous fields including veterinary sciences has led to many exemplary reviews of the parasites of honey bees and the treatment options available. However, summaries of current research frontiers in treating both novel and long-known parasites of managed honey bees are lacking. This review complements the currently comprehensive body of literature summarizing the effectiveness of parasite control in managed honey bees by outlining where significant gaps in development, implementation, and uptake lie, including integration into IPM frameworks and separation of cultural, biological, and chemical controls. In particular, I distinguish where challenges in identifying appropriate controls exist in the lab compared to where we encounter hurdles in technology transfer due to regulatory, economic, or cultural contexts. I overview how exciting frontiers in honey bee parasite control research are clearly demonstrated by the abundance of recent publications on novel control approaches, but also caution that temperance must be levied on the applied end of the research engine in believing that what can be achieved in a laboratory research environment can be quickly and effectively marketed for deployment in the field.
Collapse
Affiliation(s)
- Lewis J Bartlett
- Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
13
|
Jack CJ, Kleckner K, Demares F, Rault LC, Anderson TD, Carlier PR, Bloomquist JR, Ellis JD. Testing new compounds for efficacy against Varroa destructor and safety to honey bees (Apis mellifera). PEST MANAGEMENT SCIENCE 2022; 78:159-165. [PMID: 34464499 DOI: 10.1002/ps.6617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Varroa destructor is among the greatest threats to honey bee health worldwide. Acaricides used to control Varroa are becoming increasingly ineffective due to resistance issues, prompting the need for new compounds that can be used for control purposes. Ideally, such compounds would exhibit high toxicity to Varroa while maintaining relatively low toxicity to bees and beekeepers. We characterized the lethal concentrations (LC50 ) of amitraz, matrine, FlyNap®, the experimental carbamates 2-((2-ethylbutyl)thio)phenyl methylcarbamate (1) and 2-(2-ethylbutoxy)phenyl methylcarbamate (2), and dimethoate (positive control) for Varroa using a glass vial assay. The test compounds also were applied to honey bees using an acute contact toxicity assay to determine the adult bee LD50 for each compound. RESULTS Amitraz was the most toxic compound to Varroa, but carbamate 2 was nearly as active (within 2-fold) and the most selective due to its lower bee toxicity, demonstrating its promise as a Varroa control. While carbamate 1 was less toxic to honey bees than was amitraz, it was also 4.7-fold less toxic to the mites. Both matrine and FlyNap® were relatively ineffective at killing Varroa and were moderately toxic to honey bees. CONCLUSION Additional testing is required to determine if carbamate 2 can be used as an effective Varroa control. As new chemical treatments are identified, it will be necessary to determine how they can be utilized best alongside other control techniques as part of an integrated pest management program. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cameron J Jack
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Kaylin Kleckner
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Fabien Demares
- Entomology and Nematology Department, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Leslie C Rault
- 109D Entomology Hall, Department of Entomology, University of Nebraska, Lincoln, NE, USA
| | - Troy D Anderson
- 109D Entomology Hall, Department of Entomology, University of Nebraska, Lincoln, NE, USA
| | - Paul R Carlier
- Virginia Tech Center for Drug Discovery, Department of Chemistry, Virginia Tech, Blacksburg, VA, USA
| | - Jeffrey R Bloomquist
- Entomology and Nematology Department, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - James D Ellis
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
14
|
New bioassay cage methodology for in vitro studies on Varroa destructor and Apis mellifera. PLoS One 2021; 16:e0250594. [PMID: 33901245 PMCID: PMC8075223 DOI: 10.1371/journal.pone.0250594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/11/2021] [Indexed: 11/19/2022] Open
Abstract
Varroa destructor Anderson and Trueman, is an ectoparasitic mite of honey bees, Apis mellifera L., that has been considered a major cause of colony losses. Synthetic miticides have been developed and registered to manage this ectoparasite, however, resistance to registered pyrethroid and organophosphate Varroacides have already been reported in Canada. To test toxicity of miticides, current contact-based bioassay methods are designed to evaluate mites and bees separately, however, these methods are unlikely to give an accurate depiction of how miticides interact at the colony level. Therefore, the objective of this study was to develop a bioassay cage for testing the toxicity of miticides on honey bees and Varroa mites simultaneously using amitraz as a reference chemical. A 800 mL polypropylene plastic cage holding 100-150 bees was designed and officially named "Apiarium". A comparison of the effects of three subsequent dilutions of amitraz was conducted on: Varroa mites placed in glass vials, honey bees in glass Mason jars, and Varroa-infested bees in Apiariums. Our results indicated cumulative Varroa mortality was dose-dependent in the Apiarium after 4 h and 24 h assessments. Apiarium and glass vial treatments at 24 h also had high mite mortality and a positive polynomial regression between Varroa mortality and amitraz dose rates. Moreover, chemical application in the Apiarium was less toxic for bees compared to the Mason jar method. Considering these results, the Apiarium bioassay provides a simple, cheap and reliable method for simultaneous chemical screening on V. destructor and A. mellifera. Furthermore, as mites and bees are tested together, the Apiarium simulates a colony-like environment that provides a necessary bridge between laboratory bioassay testing and full field experimentation. The versatility of the Apiarium allows researchers to test a multitude of different honey bee bioassay experiments including miticide screening, delivery methods for chemical products, or development of new mite resistance-testing methodology.
Collapse
|