1
|
Ravaglioli C, De Marchi L, Anselmi S, Dattolo E, Fontanini D, Pretti C, Procaccini G, Rilov G, Renzi M, Silverman J, Bulleri F. Ocean acidification impairs seagrass performance under thermal stress in shallow and deep water. ENVIRONMENTAL RESEARCH 2024; 241:117629. [PMID: 37967703 DOI: 10.1016/j.envres.2023.117629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/21/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
Despite the effects of ocean acidification (OA) on seagrasses have been widely investigated, predictions of seagrass performance under future climates need to consider multiple environmental factors. Here, we performed a mesocosm study to assess the effects of OA on shallow and deep Posidonia oceanica plants. The experiment was run in 2021 and repeated in 2022, a year characterized by a prolonged warm water event, to test how the effects of OA on plants are modulated by thermal stress. The response of P. oceanica to experimental conditions was investigated at different levels of biological organization. Under average seawater temperature, there were no effects of OA in both shallow and deep plants, indicating that P. oceanica is not limited by current inorganic carbon concentration, regardless of light availability. In contrast, under thermal stress, exposure of plants to OA increased lipid peroxidation and decreased photosynthetic performance, with deep plants displaying higher levels of heat stress, as indicated by the over-expression of stress-related genes and the activation of antioxidant systems. In addition, warming reduced plant growth, regardless of seawater CO2 and light levels, suggesting that thermal stress may play a fundamental role in the future development of seagrass meadows. Our results suggest that OA may exacerbate the negative effects of future warming on seagrasses.
Collapse
Affiliation(s)
- Chiara Ravaglioli
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy.
| | - Lucia De Marchi
- Dipartimento di Scienze Veterinarie, Università of Pisa, Via Livornese (lato monte), 56122, San Piero a Grado, Pisa, Italy.
| | - Serena Anselmi
- Bioscience Research Center, Via Aurelia Vecchia, 32, 58015, Orbetello, GR, Italy.
| | - Emanuela Dattolo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy; National Biodiversity Future Centre (NBFC), Palermo, Italy.
| | - Debora Fontanini
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy.
| | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università of Pisa, Via Livornese (lato monte), 56122, San Piero a Grado, Pisa, Italy; Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N.Sauro 4, 57128, Livorno, Italy.
| | - Gabriele Procaccini
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy; National Biodiversity Future Centre (NBFC), Palermo, Italy.
| | - Gil Rilov
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel.
| | - Monia Renzi
- Dipartimento di Scienze Della Vita, Università di Trieste, Via Giorgieri, 10, 34127, Trieste, Italy.
| | - Jacob Silverman
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel.
| | - Fabio Bulleri
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy; Centro Interdipartimentale di Ricerca per Lo Studio Degli Effetti Del Cambiamento Climatico (CIRSEC), Università di Pisa, Italy.
| |
Collapse
|
2
|
Malea P, Kokkinidi D, Kevrekidou A, Adamakis IDS. The Enzymatic and Non-Enzymatic Antioxidant System Response of the Seagrass Cymodocea nodosa to Bisphenol-A Toxicity. Int J Mol Sci 2022; 23:1348. [PMID: 35163270 PMCID: PMC8835922 DOI: 10.3390/ijms23031348] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/04/2022] Open
Abstract
The effects of environmentally relevant bisphenol A (BPA) concentrations (0.3, 1 and 3 μg L-1) were tested at 2, 4, 6 and 8 days, on intermediate leaves, of the seagrass Cymodocea nodosa. Hydrogen peroxide (H2O2) production, lipid peroxidation, protein, phenolic content and antioxidant enzyme activities were investigated. Increased H2O2 formation was detected even at the lowest BPA treatments from the beginning of the experiment and both the enzymatic and non-enzymatic antioxidant defense mechanisms were activated upon application of BPA. Elevated H2O2 levels that were detected as a response to increasing BPA concentrations and incubation time, led to the decrease of protein content on the 4th day even at the two lower BPA concentrations, and to the increase of the lipid peroxidation at the highest concentration. However, on the 6th day of BPA exposure, protein content did not differ from the control, indicating the ability of both the enzymatic and non-enzymatic mechanisms (such as superoxide dismutase (SOD) and phenolics) to counteract the BPA-derived oxidative stress. The early response of the protein content determined that the Low Effect Concentration (LOEC) of BPA is 0.3 μg L-1 and that the protein content meets the requirements to be considered as a possible early warning "biomarker" for C. nodosa against BPA toxicity.
Collapse
Affiliation(s)
- Paraskevi Malea
- School of Biology, Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Danae Kokkinidi
- School of Biology, Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Alkistis Kevrekidou
- School of Engineering, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | | |
Collapse
|