1
|
David D, Rusdi NA, Mokhtar RAM, Goh LPW, Gansau JA. Untargeted Metabolite Profiling of Wild and In Vitro Propagated Sabah Jewel Orchid Macodes limii J.J. Wood & A.L. Lamb. Trop Life Sci Res 2024; 35:23-56. [PMID: 39464667 PMCID: PMC11507973 DOI: 10.21315/tlsr2024.35.3.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/05/2024] [Indexed: 10/29/2024] Open
Abstract
Macodes limii J.J. Wood & A.L. Lamb is a terrestrial jewel orchid native to Sabah, recognised for its sparkling golden-yellow venations, uniformly distributed on its leaves. Despite its high ornamental value, the exploration of the plant's medicinal potential remains ambiguous. The current study was conducted to gain a fundamental understanding of the metabolite composition and regulation in M. limii plants from two different growing environments: wild and in vitro cultivation, as well as to analyse their phytochemical contents and antioxidant activity. The metabolite profiling of the M . limii plant extracts through gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis has tentatively identified compounds from various classes including sugars, carbohydrates, sugar alcohols, amino acids, organic acids, phenolic derivatives and lipid and lipid-like compounds. Subsequently, the multivariate statistical analysis confirmed the existence of significant metabolite variations across distinct growth environments. Notably, the leaf extract derived from wild-grown plants displayed the highest levels of total phenolic and flavonoid content, contributing significantly to its higher antioxidant activity as measured by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The discovery has offered a fundamental understanding of the metabolites in M. limii jewel orchids, indicating that in vitro regenerated plants may represent a viable alternative for further investigating their therapeutic potential, thus helping to alleviate the impact on wild populations.
Collapse
Affiliation(s)
- Devina David
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, 90509 Sandakan, Sabah, Malaysia
| | - Nor Azizun Rusdi
- Institute of Tropical Biology and Conservation, Universiti Malaysia Sabah, 80400 Kota Kinabalu, Sabah, Malaysia
| | | | - Lucky Poh Wah Goh
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Jualang Azlan Gansau
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
2
|
Dos Reis JBA, Lorenzi AS, Pinho DB, Cortelo PC, do Vale HMM. The hidden treasures in endophytic fungi: a comprehensive review on the diversity of fungal bioactive metabolites, usual analytical methodologies, and applications. Arch Microbiol 2024; 206:185. [PMID: 38506928 DOI: 10.1007/s00203-024-03911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
This review provides a comprehensive overview of the key aspects of the natural metabolite production by endophytic fungi, which has attracted significant attention due to its diverse biological activities and wide range of applications. Synthesized by various fungal species, these metabolites encompass compounds with therapeutic, agricultural, and commercial significance. We delved into strategies and advancements aimed at optimizing fungal metabolite production. Fungal cultivation, especially by Aspergillus, Penicillium, and Fusarium, plays a pivotal role in metabolite biosynthesis, and researchers have explored both submerged and solid-state cultivation processes to harness the full potential of fungal species. Nutrient optimization, pH, and temperature control are critical factors in ensuring high yields of the targeted bioactive metabolites especially for scaling up processes. Analytical methods that includes High-Performance Liquid Chromatography (HPLC), Liquid Chromatography-Mass Spectrometry (LC-MS), Gas Chromatography-Mass Spectrometry (GC-MS), Nuclear Magnetic Resonance (NMR), and Mass Spectrometry (MS), are indispensable for the identification and quantification of the compounds. Moreover, genetic engineering and metabolic pathway manipulation have emerged as powerful tools to enhance metabolite production and develop novel fungal strains with increased yields. Regulation and control mechanisms at the genetic, epigenetic, and metabolic levels are explored to fine-tune the biosynthesis of fungal metabolites. Ongoing research aims to overcome the complexity of the steps involved to ensure the efficient production and utilization of fungal metabolites.
Collapse
Affiliation(s)
| | - Adriana Sturion Lorenzi
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, DF, Brazil
| | - Danilo Batista Pinho
- Department of Phytopathology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, DF, Brazil
| | | | - Helson Mario Martins do Vale
- Department of Phytopathology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, DF, Brazil
| |
Collapse
|
3
|
Alvarez-Cirerol FJ, Galván-Moroyoqui JM, Rodríguez-León E, Candía-Plata C, Rodríguez-Beas C, López-Soto LF, Rodríguez-Vázquez BE, Bustos-Arriaga J, Soto-Guzmán A, Larios-Rodríguez E, Martínez-Soto JM, Martinez-Higuera A, Iñiguez-Palomares RA. Monocyte (THP-1) Response to Silver Nanoparticles Synthesized with Rumex hymenosepalus Root Extract. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:106. [PMID: 38202561 PMCID: PMC10780692 DOI: 10.3390/nano14010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
The study, synthesis, and application of nanomaterials in medicine have grown exponentially in recent years. An example of this is the understanding of how nanomaterials activate or regulate the immune system, particularly macrophages. In this work, nanoparticles were synthesized using Rumex hymenosepalus as a reducing agent (AgRhNPs). According to thermogravimetric analysis, the metal content of nanoparticles is 55.5% by weight. The size of the particles ranges from 5-26 nm, with an average of 11 nm, and they possess an fcc crystalline structure. The presence of extract molecules on the nanomaterial was confirmed by UV-Vis and FTIR. It was found by UPLC-qTOF that the most abundant compounds in Rh extract are flavonols, flavones, isoflavones, chalcones, and anthocyanidins. The viability and apoptosis of the THP-1 cell line were evaluated for AgRhNPs, commercial nanoparticles (AgCNPs), and Rh extract. The results indicate a minimal cytotoxic and apoptotic effect at a concentration of 12.5 μg/mL for both nanoparticles and 25 μg/mL for Rh extract. The interaction of the THP-1 cell line and treatments was used to evaluate the polarization of monocyte subsets in conjunction with an evaluation of CCR2, Tie-2, and Arg-1 expression. The AgRhNPs nanoparticles and Rh extract neither exhibited cytotoxicity in the THP-1 monocyte cell line. Additionally, the treatments mentioned above exhibited anti-inflammatory effects by maintaining the classical monocyte phenotype CD14++CD16, reducing pro-inflammatory interleukin IL-6 production, and increasing IL-4 production.
Collapse
Affiliation(s)
| | - José Manuel Galván-Moroyoqui
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Mexico; (C.C.-P.); (L.F.L.-S.); (A.S.-G.); (J.M.M.-S.)
| | - Ericka Rodríguez-León
- Departamento de Física, Universidad de Sonora, Hermosillo 83000, Mexico; (E.R.-L.); (C.R.-B.); (B.E.R.-V.)
| | - Carmen Candía-Plata
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Mexico; (C.C.-P.); (L.F.L.-S.); (A.S.-G.); (J.M.M.-S.)
| | - César Rodríguez-Beas
- Departamento de Física, Universidad de Sonora, Hermosillo 83000, Mexico; (E.R.-L.); (C.R.-B.); (B.E.R.-V.)
| | - Luis Fernando López-Soto
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Mexico; (C.C.-P.); (L.F.L.-S.); (A.S.-G.); (J.M.M.-S.)
| | | | - José Bustos-Arriaga
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Adriana Soto-Guzmán
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Mexico; (C.C.-P.); (L.F.L.-S.); (A.S.-G.); (J.M.M.-S.)
| | - Eduardo Larios-Rodríguez
- Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo 83000, Mexico;
| | - Juan M. Martínez-Soto
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Mexico; (C.C.-P.); (L.F.L.-S.); (A.S.-G.); (J.M.M.-S.)
| | | | - Ramón A. Iñiguez-Palomares
- Departamento de Física, Universidad de Sonora, Hermosillo 83000, Mexico; (E.R.-L.); (C.R.-B.); (B.E.R.-V.)
| |
Collapse
|
4
|
Yudaputra A, Astuti IP, Handayani T, Siregar H, Robiansyah I, Wahyuni S, Rachmadiyanto AN, Purnomo DW, Kurniawan V, Isnaini Y, Damayanti F, Zulkarnaen RN, Witono JR, Fijridiyanto IA, Yuzammi, Hidayat A, Siregar M, Munawaroh E, Wardhani FA, Raharjo PD, Widiana A, Cropper Jr WP. Comprehensive approaches for assessing extinction risk of endangered tropical pitcher plant Nepenthes talangensis. PLoS One 2023; 18:e0289722. [PMID: 37549156 PMCID: PMC10406325 DOI: 10.1371/journal.pone.0289722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
It has been 23 years since the conservation status of highland tropical pitcher plant Nepenthes talangensis was assessed in 2000. A number of existing threats (anthropogenic and environmental) may be increasing the risk of extinction for the species. A better understanding of the ecology and conservation needs of the species is required to manage the wild populations. Specifically, better information related to population distributions, ecological requirements, priority conservation areas, the impact of future climate on suitable habitat, and current population structure is needed to properly assess extinction risks. A better understanding of the requirements of the species in its natural habitat would benefit for successfully securing the species at Botanic Gardens. We have identified 14 new occurrence records of N. talangensis in Mount Talang. Study on the ecological requirement using Random Forest (RF) and Artificial Neural Network (ANN) suggested that elevation, canopy cover, soil pH, and slope are four important variables. The population of N. talangensis was dominated by juvenile and mature (sterile) individuals, we found only a few mature males (7 individuals) and females (4 individuals) in the sampled areas. Our modelling of current conditions predicted that there were 1,076 ha of suitable habitat to very highly suitable habitat in Mount Talang, which is 14.7% of the total area. Those predicted habitats ranged in elevation from 1,740-2,558 m. Suitable habitat in 2100 was predicted to decrease in extent and be at higher elevation in the less extreme climate change scenario (SSP 1-2.6) and extreme climate change scenario (SSP 5-8.5). We projected larger habitat loss in the SSP 5-8.5 compared to the SSP 1-2.6 climate change scenario.. We proposed the category CR B1ab(iii,v), C2a(ii) as the new conservation status of N. talangensis. The status is a higher category of threat compared to the current status of the species (EN C2b, ver 2.3). Nepenthes talangensis seedlings and cuttings established in a Botanic Garden have relatively high survival rate at about 83.4%. Sixty percent of the seeds germinated in growth media successfully grew to become seedlings.
Collapse
Affiliation(s)
- Angga Yudaputra
- Research Center for Plant Conservation, Botanic Gardens, and Forestry–National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Inggit Puji Astuti
- Research Center for Plant Conservation, Botanic Gardens, and Forestry–National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Tri Handayani
- Research Center for Plant Conservation, Botanic Gardens, and Forestry–National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Hartutiningsih Siregar
- Research Center for Plant Conservation, Botanic Gardens, and Forestry–National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Iyan Robiansyah
- Research Center for Plant Conservation, Botanic Gardens, and Forestry–National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Sri Wahyuni
- Research Center for Plant Conservation, Botanic Gardens, and Forestry–National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Arief Noor Rachmadiyanto
- Research Center for Plant Conservation, Botanic Gardens, and Forestry–National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Danang Wahyu Purnomo
- Research Center for Plant Conservation, Botanic Gardens, and Forestry–National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Vandra Kurniawan
- Research Center for Plant Conservation, Botanic Gardens, and Forestry–National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Yupi Isnaini
- Research Center for Plant Conservation, Botanic Gardens, and Forestry–National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Frisca Damayanti
- Research Center for Plant Conservation, Botanic Gardens, and Forestry–National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Rizmoon Nurul Zulkarnaen
- Research Center for Plant Conservation, Botanic Gardens, and Forestry–National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Joko Ridho Witono
- Research Center for Biosystematics and Evolution–National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Izu Andry Fijridiyanto
- Research Center for Biosystematics and Evolution–National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Yuzammi
- Research Center for Biosystematics and Evolution–National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Arief Hidayat
- Research Center for Biosystematics and Evolution–National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Mustaid Siregar
- Research Center for Ecology and Ethnobiology–National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Esti Munawaroh
- Research Center for Ecology and Ethnobiology–National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Fitriany Amalia Wardhani
- Research Center for Limnology and Water Resources–National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Puguh Dwi Raharjo
- Research Center for Geological Resources–National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Ana Widiana
- Faculty of Science and Technology, UIN Sunan Gunung Djati Bandung, Bandung, Indonesia
| | - Wendell P. Cropper Jr
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL United States of America
| |
Collapse
|
5
|
Carnivorous Plants from Nepenthaceae and Droseraceae as a Source of Secondary Metabolites. Molecules 2023; 28:molecules28052155. [PMID: 36903400 PMCID: PMC10004607 DOI: 10.3390/molecules28052155] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Carnivorous plants are able to attract small animals or protozoa and retain them in their specialized traps. Later, the captured organisms are killed and digested. The nutrients contained in the prey bodies are absorbed by the plants to use for growth and reproduction. These plants produce many secondary metabolites involved in the carnivorous syndrome. The main purpose of this review was to provide an overview of the secondary metabolites in the family Nepenthaceae and Droseraceae, which were studied using modern identification techniques, i.e., high-performance liquid chromatography or ultra-high-performance liquid chromatography with mass spectrometry and nuclear magnetic resonance spectroscopy. After literature screening, there is no doubt that tissues of species from the genera Nepenthes, Drosera, and Dionaea are rich sources of secondary metabolites that can be used in pharmacy and for medical purposes. The main types of the identified compounds include phenolic acids and their derivatives (gallic, protocatechuic, chlorogenic, ferulic, p-coumaric acids, gallic, hydroxybenzoic, vanillic, syringic caffeic acids, and vanillin), flavonoids (myricetin, quercetin, and kaempferol derivatives), including anthocyanins (delphinidin-3-O-glucoside, cyanidin-3-O-glucoside, and cyanidin), naphthoquinones (e.g., plumbagin, droserone, and 5-O-methyl droserone), and volatile organic compounds. Due to the biological activity of most of these substances, the importance of the carnivorous plant as a pharmaceutical crop will increase.
Collapse
|
6
|
Baharin A, Ting TY, Goh HH. Omics Approaches in Uncovering Molecular Evolution and Physiology of Botanical Carnivory. PLANTS (BASEL, SWITZERLAND) 2023; 12:408. [PMID: 36679121 PMCID: PMC9867145 DOI: 10.3390/plants12020408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Systems biology has been increasingly applied with multiple omics for a holistic comprehension of complex biological systems beyond the reductionist approach that focuses on individual molecules. Different high-throughput omics approaches, including genomics, transcriptomics, metagenomics, proteomics, and metabolomics have been implemented to study the molecular mechanisms of botanical carnivory. This covers almost all orders of carnivorous plants, namely Caryophyllales, Ericales, Lamiales, and Oxalidales, except Poales. Studies using single-omics or integrated multi-omics elucidate the compositional changes in nucleic acids, proteins, and metabolites. The omics studies on carnivorous plants have led to insights into the carnivory origin and evolution, such as prey capture and digestion as well as the physiological adaptations of trap organ formation. Our understandings of botanical carnivory are further enhanced by the discoveries of digestive enzymes and transporter proteins that aid in efficient nutrient sequestration alongside dynamic molecular responses to prey. Metagenomics studies revealed the mutualistic relationships between microbes and carnivorous plants. Lastly, in silico analysis accelerated the functional characterization of new molecules from carnivorous plants. These studies have provided invaluable molecular data for systems understanding of carnivorous plants. More studies are needed to cover the diverse species with convergent evolution of botanical carnivory.
Collapse
|
7
|
Puah PY, Lee DJH, Puah SH, Lah NASN, Ling YS, Fong SY. High-throughput metabolomics reveals dysregulation of hydrophobic metabolomes in cancer cell lines by Eleusine indica. Sci Rep 2022; 12:9347. [PMID: 35668092 PMCID: PMC9168358 DOI: 10.1038/s41598-022-13575-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/18/2022] [Indexed: 11/09/2022] Open
Abstract
Eleusine indica, which is used in traditional medicine, exhibits antiproliferative activity against several cancer cell lines. However, metabolomic studies to evaluate the metabolite changes induced by E. indica in cancer cells are still lacking. The present study investigated the anticancer effects of a root fraction of E. indica (R-S5-C1-H1) on H1299, MCF-7, and SK-HEP-1 cell lines and analyzed metabolic changes in the treated cancer cells using ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS). Cell metabolic activity assays demonstrated that the cell viability of the three cancer cell lines was significantly reduced following treatment with R-S5-C1-H1, with half-maximal inhibitory concentrations values of 12.95 µg/mL, 15.99 µg/mL, and 13.69 µg/mL at 72 h, respectively. Microscopy analysis using Hoechst 33342 and Annexin V fluorescent dyes revealed that cells treated with R-S5-C1-H1 underwent apoptotic cell death, while chemometric analysis suggested that apoptosis was triggered 48 h after treatment with R-S5-C1-H1. Deconvoluted cellular metabolomics revealed that hydrophobic metabolites were significantly altered, including triacylglycerols, phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, and ceramide, suggesting that apoptosis induction by R-S5-C1-H1 potentially occurred through modulation of phospholipid synthesis and sphingolipid metabolism. These metabolomic profiling results provide new insights into the anticancer mechanisms of E. indica and facilitate the overall understanding of molecular events following therapeutic interventions.
Collapse
Affiliation(s)
- Perng Yang Puah
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Dexter Jiunn Herng Lee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Soo Huan Puah
- Medical Department, Sarawak General Hospital, Jalan Hospital, 93586, Kuching, Sarawak, Malaysia
- Medical Department, Hospital Seberang Jaya, Jalan Tun Hussein Onn, Seberang Jaya, 13700, Permatang Pauh, Penang, Malaysia
| | - Nik Amin Sahid Nik Lah
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Yee Soon Ling
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
- CAIQ Certification Sdn Bhd Kota Kinabalu, Sabah, Malaysia.
| | - Siat Yee Fong
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
8
|
Dussarrat T, Prigent S, Latorre C, Bernillon S, Flandin A, Díaz FP, Cassan C, Van Delft P, Jacob D, Varala K, Joubes J, Gibon Y, Rolin D, Gutiérrez RA, Pétriacq P. Predictive metabolomics of multiple Atacama plant species unveils a core set of generic metabolites for extreme climate resilience. THE NEW PHYTOLOGIST 2022; 234:1614-1628. [PMID: 35288949 PMCID: PMC9324839 DOI: 10.1111/nph.18095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Current crop yield of the best ideotypes is stagnating and threatened by climate change. In this scenario, understanding wild plant adaptations in extreme ecosystems offers an opportunity to learn about new mechanisms for resilience. Previous studies have shown species specificity for metabolites involved in plant adaptation to harsh environments. Here, we combined multispecies ecological metabolomics and machine learning-based generalized linear model predictions to link the metabolome to the plant environment in a set of 24 species belonging to 14 families growing along an altitudinal gradient in the Atacama Desert. Thirty-nine common compounds predicted the plant environment with 79% accuracy, thus establishing the plant metabolome as an excellent integrative predictor of environmental fluctuations. These metabolites were independent of the species and validated both statistically and biologically using an independent dataset from a different sampling year. Thereafter, using multiblock predictive regressions, metabolites were linked to climatic and edaphic stressors such as freezing temperature, water deficit and high solar irradiance. These findings indicate that plants from different evolutionary trajectories use a generic metabolic toolkit to face extreme environments. These core metabolites, also present in agronomic species, provide a unique metabolic goldmine for improving crop performances under abiotic pressure.
Collapse
Affiliation(s)
- Thomas Dussarrat
- Departamento de Genética Molecular y MicrobiologíaPontificia Universidad Católica de ChileFONDAP Center for Genome Regulation and Millenium Institute for Integrative Biology (iBio)Av Libertador Bernardo O'Higgins 340SantiagoChile
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
| | - Sylvain Prigent
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Claudio Latorre
- Departamento de EcologíaPontificia Universidad Católica de ChileAv Libertador Bernardo O'Higgins 340SantiagoChile
- Institute of Ecology and Biodiversity (IEB)Las Palmeras3425ÑuñoaSantiagoChile
| | - Stéphane Bernillon
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Amélie Flandin
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Francisca P. Díaz
- Departamento de Genética Molecular y MicrobiologíaPontificia Universidad Católica de ChileFONDAP Center for Genome Regulation and Millenium Institute for Integrative Biology (iBio)Av Libertador Bernardo O'Higgins 340SantiagoChile
| | - Cédric Cassan
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Pierre Van Delft
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
- Laboratoire de Biogenèse Membranaire, CNRSUniv. Bordeaux, UMR 5200Villenave d'OrnonFrance
| | - Daniel Jacob
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Kranthi Varala
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIN47907USA
- Center for Plant BiologyPurdue UniversityWest LafayetteIN47907USA
| | - Jérôme Joubes
- Laboratoire de Biogenèse Membranaire, CNRSUniv. Bordeaux, UMR 5200Villenave d'OrnonFrance
| | - Yves Gibon
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Dominique Rolin
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Rodrigo A. Gutiérrez
- Departamento de Genética Molecular y MicrobiologíaPontificia Universidad Católica de ChileFONDAP Center for Genome Regulation and Millenium Institute for Integrative Biology (iBio)Av Libertador Bernardo O'Higgins 340SantiagoChile
| | - Pierre Pétriacq
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| |
Collapse
|
9
|
Liu W, Lin LC, Wang PJ, Chen YN, Wang SC, Chuang YT, Tsai IH, Yu SY, Chang FR, Cheng YB, Huang LC, Huang MY, Chang HW. Nepenthes Ethyl Acetate Extract Provides Oxidative Stress-Dependent Anti-Leukemia Effects. Antioxidants (Basel) 2021; 10:antiox10091410. [PMID: 34573042 PMCID: PMC8464713 DOI: 10.3390/antiox10091410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Several kinds of solvents have been applied to Nepenthes extractions exhibiting antioxidant and anticancer effects. However, they were rarely investigated for Nepenthes ethyl acetate extract (EANT), especially leukemia cells. The purpose of the present study was to evaluate the antioxidant properties and explore the antiproliferation impact and mechanism of EANT in leukemia cells. Five standard assays demonstrated that EANT exhibits antioxidant capability. In the cell line model, EANT dose-responsively inhibited cell viabilities of three leukemia cell lines (HL-60, K-562, and MOLT-4) based on 24 h MTS assays, which were reverted by pretreating oxidative stress and apoptosis inhibitors (N-acetylcysteine and Z-VAD-FMK). Due to similar sensitivities among the three cell lines, leukemia HL-60 cells were chosen for exploring antiproliferation mechanisms. EANT caused subG1 and G1 cumulations, triggered annexin V-detected apoptosis, activated apoptotic caspase 3/7 activity, and induced poly ADP-ribose polymerase expression. Moreover, reactive oxygen species, mitochondrial superoxide, and mitochondrial membrane depolarization were generated by EANT, which was reverted by N-acetylcysteine. The antioxidant response to oxidative stress showed that EANT upregulated mRNA expressions for nuclear factor erythroid 2-like 2 (NFE2L2), catalase (CAT), thioredoxin (TXN), heme oxygenase 1 (HMOX1), and NAD(P)H quinone dehydrogenase 1 (NQO1) genes. Moreover, these oxidative stresses led to DNA damage (γH2AX and 8-hydroxy-2-deoxyguanosine) and were alleviated by N-acetylcysteine. Taken together, EANT demonstrated oxidative stress-dependent anti-leukemia ability to HL-60 cells associated with apoptosis and DNA damage.
Collapse
Affiliation(s)
- Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi-Mei Foundation Medical Center, Tainan 71004, Taiwan;
- School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Chung Hwa University Medical Technology, Tainan 71703, Taiwan
| | - Pei-Ju Wang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.-J.W.); (Y.-N.C.); (S.-C.W.); (Y.-T.C.); (I.-H.T.); (L.-C.H.)
| | - Yan-Ning Chen
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.-J.W.); (Y.-N.C.); (S.-C.W.); (Y.-T.C.); (I.-H.T.); (L.-C.H.)
| | - Sheng-Chieh Wang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.-J.W.); (Y.-N.C.); (S.-C.W.); (Y.-T.C.); (I.-H.T.); (L.-C.H.)
| | - Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.-J.W.); (Y.-N.C.); (S.-C.W.); (Y.-T.C.); (I.-H.T.); (L.-C.H.)
| | - I-Hsuan Tsai
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.-J.W.); (Y.-N.C.); (S.-C.W.); (Y.-T.C.); (I.-H.T.); (L.-C.H.)
| | - Szu-Yin Yu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.Y.); (F.-R.C.)
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.Y.); (F.-R.C.)
| | - Yuan-Bin Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Li-Chen Huang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.-J.W.); (Y.-N.C.); (S.-C.W.); (Y.-T.C.); (I.-H.T.); (L.-C.H.)
| | - Ming-Yii Huang
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (M.-Y.H.); (H.-W.C.); Tel.: +886-7-312-1101 (ext. 7158) (M.-Y.H.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Chung Hwa University Medical Technology, Tainan 71703, Taiwan
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.-J.W.); (Y.-N.C.); (S.-C.W.); (Y.-T.C.); (I.-H.T.); (L.-C.H.)
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (M.-Y.H.); (H.-W.C.); Tel.: +886-7-312-1101 (ext. 7158) (M.-Y.H.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
10
|
Mithöfer A. A spotlight on prey-induced metabolite dynamics in sundew. A commentary on: 'Metabolomic analysis reveals reliance on secondary plant metabolites to facilitate carnivory in the Cape sundew, Drosera capensis'. ANNALS OF BOTANY 2021; 128:v-vi. [PMID: 34302338 PMCID: PMC8389468 DOI: 10.1093/aob/mcab093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article comments on: Christopher R. Hatcher, Ulf Sommer, Liam M. Heaney and Jonathan Millett, Metabolomic analysis reveals reliance on secondary plant metabolites to facilitate carnivory in the Cape sundew, Drosera capensis, Annals of Botany Volume 128, Issue 3, 26 August 2021, Pages 301–314, https://doi.org/10.1093/aob/mcab065
Collapse
Affiliation(s)
- Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Hans Knöll Straße, Jena, Germany
| |
Collapse
|
11
|
Wei W, Li S, Wang Y, Wang B, Fan G, Zeng Q, Zhao F, Xu C, Zhang X, Tang T, Feng X, Shi J, Shi G, Zhang W, Song G, Li H, Wang F, Zhang Y, Li X, Wang D, Zhang W, Pei J, Wang X, Zhao Z. Metabolome-Based Genome-Wide Association Study Provides Genetic Insights Into the Natural Variation of Foxtail Millet. FRONTIERS IN PLANT SCIENCE 2021; 12:665530. [PMID: 34386024 PMCID: PMC8353534 DOI: 10.3389/fpls.2021.665530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/20/2021] [Indexed: 05/23/2023]
Abstract
The plant metabolome is considered as a bridge between the genome and the phenome and is essential for the interaction between plant growth and the plant environment. Here, we used the liquid chromatography-tandem mass spectrometry method to perform a widely targeted metabolomics analysis of 150 millet germplasm and simultaneous identification and quantification of 330 annotated metabolites. Comparing the metabolic content of different millets revealed significant natural variation of both primary and secondary metabolites, including flavonoids, phenolamides, hydroxycinnamoyl derivatives, nucleotides, and lipids, in the millets from India and the north and south of China; among them, some of the flavonoids are the most prominent. A total of 2.2 TB sequence data were obtained by sequencing 150 accessions of foxtail millet using the Illumina platform. Further digging into the genetic basis of metabolites by mGWAS analysis found that cyanidin 3-O-glucoside and quercetin O-acetylhexside are concentratedly located at 43.55 Mb on chromosome 5 and 26.9 Mb on chromosome 7, and two Lc were mined as candidate genes, respectively. However, the signals of luteolin 7-O-glucoside and kaempferol 3-O-glucoside were also detected at 14.36 Mb on chromosome 3, and five glycosyltransferase genes on this loci were deemed to regulate their content. Our work is the first research to use mGWAS in millet, and it paves the way for future dissection of complex physiological traits in millet.
Collapse
Affiliation(s)
- Wei Wei
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Shuangdong Li
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Yixiang Wang
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China
| | - Bin Wang
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China
| | - Guangyu Fan
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Qisen Zeng
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China
| | - Fang Zhao
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Congping Xu
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China
| | - Xiaolei Zhang
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Tang Tang
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China
| | - Xiaolei Feng
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Jian Shi
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China
| | - Gaolei Shi
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Weiqin Zhang
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China
| | - Guoliang Song
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Huan Li
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China
| | - Feng Wang
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Yali Zhang
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Xinru Li
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Dequan Wang
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Wenying Zhang
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Jingjing Pei
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Xiaoming Wang
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Zhihai Zhao
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| |
Collapse
|
12
|
Li F, Lu X, Duan P, Liang Y, Cui J. Integrating transcriptome and metabolome analyses of the response to cold stress in pumpkin (Cucurbita maxima). PLoS One 2021; 16:e0249108. [PMID: 33956796 PMCID: PMC8101736 DOI: 10.1371/journal.pone.0249108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Cucurbita maxima belong to the genus Cucurbita and are of nutritional and economic importance. Physiological activity, transcriptome, and metabolome analyses of leaf samples from the C. maxima inbreding line IL7 treated at 5 °C and 25 °C were performed. Cold stress resulted in a significant increase in the malondialdehyde content, relative electrical conductivity, soluble protein, sugar content, and catalase activity. A total of 5,553 differentially expressed genes were identified, of which 2,871 were up-regulated and 2,682 down-regulated. In addition, the transcription of differentially expressed genes in the plant hormone signal transduction pathway and transcription factor families of AP2/ERF, bHLH, WRKY, MYB, and HSF was activated. Moreover, 114 differentially expressed metabolites were identified by gas chromatography time-of-flight mass spectrometry, particularly through the analysis of carboxylic acids and derivatives, and organooxygen compounds. The demonstration of a series of potential metabolites and corresponding genes highlighted a comprehensive regulatory mechanism. These findings will provide novel insights into the molecular mechanisms associated with the response to cold stress in C. maxima.
Collapse
Affiliation(s)
- Fengmei Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong, China
| | - Xiuping Lu
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong, China
| | - Pengfei Duan
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong, China
| | - Yanjiao Liang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong, China
| | - Jian Cui
- Qingdao Institute of Agricultural Science Research, Qingdao, Shandong, China
| |
Collapse
|