1
|
Segura-Vega J, González-Herrera A, Molina-Bravo R, Solano-González S. Computational identification and characterization of chitinase 1 and chitinase 2 from neotropical isolates of Beauveria bassiana. FRONTIERS IN BIOINFORMATICS 2024; 4:1434442. [PMID: 39493578 PMCID: PMC11527780 DOI: 10.3389/fbinf.2024.1434442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Background The fungus Beauveria bassiana is widely used for agronomical applications, mainly in biological control. B. bassiana uses chitinase enzymes to degrade chitin, a major chemical component found in insect exoskeletons and fungal cell walls. However, until recently, genomic information on neotropical isolates, as well as their metabolic and biotechnological potential, has been limited. Methods Eight complete B. bassiana genomes of Neotropical origin and three references were studied to identify chitinase genes and its corresponding proteins, which were curated and characterized using manual curation and computational tools. We conducted a computational study to highlight functional differences and similarities for chitinase proteins in these Neotropical isolates. Results Eleven chitinase 1 genes were identified, categorized as chitinase 1.1 and chitinase 1.2. Five chitinase 2 genes were identified but presented a higher sequence conservation across all sequences. Interestingly, physicochemical parameters were more similar between chitinase 1.1 and chitinase 2 than between chitinase 1.1 and 1.2. Conclusion Chitinases 1 and 2 demonstrated variations, especially within chitinase 1, which presented a potential paralog. These differences were observed in their physical parameters. Additionally, CHIT2 completely lacks a signal peptide. This implies that CHIT1 might be associated with infection processes, while CHIT2 could be involved in morphogenesis and cellular growth. Therefore, our work highlights the importance of computational studies on local isolates, providing valuable resources for further experimental validation. Intrinsic changes within local species can significantly impact our understanding of complex pathogen-host interactions and offer practical applications, such as biological control.
Collapse
Affiliation(s)
- Juan Segura-Vega
- Laboratorio de Bioinformática Aplicada, Escuela de Ciencias Biológicas, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Allan González-Herrera
- Laboratorio de Control Biológico, Escuela de Ciencias Agrarias, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Ramón Molina-Bravo
- Programa de Biotecnología Vegetal y Recursos Genéticos para el Fitomejoramiento (BIOVERFI), Escuela de Ciencias Agrarias, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Stefany Solano-González
- Laboratorio de Bioinformática Aplicada, Escuela de Ciencias Biológicas, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| |
Collapse
|
2
|
Zamora-Avilés N, Orozco-Flores AA, Cavazos-Vallejo T, Romo-Sáenz CI, Cuevas-García DA, Gomez-Flores R, Tamez-Guerra P. Intra-Phenotypic and -Genotypic Variations of Beauveria bassiana (Bals.) Vuill. Strains Infecting Aedes aegypti L. Adults. Int J Mol Sci 2024; 25:8807. [PMID: 39201493 PMCID: PMC11354911 DOI: 10.3390/ijms25168807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Beauveria bassiana has potential for Aedes aegypti biological control. However, its efficacy depends on the strain's geographic location, host susceptibility, and virulence. The present study aimed to evaluate the effectiveness of B. bassiana strain BBPTG4 conidia in controlling Ae. aegypti adults and its detection via introns profile on exposed mosquito corpses. Morphologic characteristics among strains were highly similar. Comprehensive testing of these strains demonstrated that BBPT4 exhibited the ideal biological activity for Ae. aegypti control, with a median lethal time (TL50) of 7.5 d compared to ~3 d and ~10 d for BB01 and BB37 strains, respectively. Infected mosquitoes died after GHA and BBPTG4 exposure, and corpses were analyzed for infecting strains detection. Differences among the seven evaluated strains were determined, assessing five different insertion group I intron profiles in BBTG4, BB01, GHA, BB37, and BB02 strains. Mosquitoes infected by BBPTG4 and non-exposed (negative control) intron profiles were obtained. We detected the presence of introns in the BBPTG4 strain, which were not present in non-exposed mosquitoes. In conclusion, B. bassiana strains showed similarities in terms of their cultural and microscopic morphological characteristics and biologicals virulence level, but different intron profiles. BBPTG4 strain-infected Ae. aegypti adult corpses, showing specific amplicons, enabled us to identify B. bassiana at the strain level among infected mosquitoes. However, monitoring and detection of field-infected insects is essential for further verification.
Collapse
Affiliation(s)
- Norma Zamora-Avilés
- Departamento Ecología de Artrópodos y Manejo de Plagas, El Colegio de la Frontera Sur (ECOSUR), Carretera Antiguo Aeropuerto Km 2.5, Tapachula 30700, Mexico;
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (A.A.O.-F.); (T.C.-V.); (C.I.R.-S.); (D.A.C.-G.); (R.G.-F.)
| | - Alonso A. Orozco-Flores
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (A.A.O.-F.); (T.C.-V.); (C.I.R.-S.); (D.A.C.-G.); (R.G.-F.)
| | - Teodora Cavazos-Vallejo
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (A.A.O.-F.); (T.C.-V.); (C.I.R.-S.); (D.A.C.-G.); (R.G.-F.)
| | - César I. Romo-Sáenz
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (A.A.O.-F.); (T.C.-V.); (C.I.R.-S.); (D.A.C.-G.); (R.G.-F.)
| | - David A. Cuevas-García
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (A.A.O.-F.); (T.C.-V.); (C.I.R.-S.); (D.A.C.-G.); (R.G.-F.)
| | - Ricardo Gomez-Flores
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (A.A.O.-F.); (T.C.-V.); (C.I.R.-S.); (D.A.C.-G.); (R.G.-F.)
| | - Patricia Tamez-Guerra
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (A.A.O.-F.); (T.C.-V.); (C.I.R.-S.); (D.A.C.-G.); (R.G.-F.)
| |
Collapse
|
3
|
Zhu J, Fu Y, Zhang L, Yang T, Zhou X. Transcriptomic Profiling of Bean Aphid Megoura crassicauda upon Exposure to the Aphid-Obligate Entomopathogen Conidiobolus obscurus (Entomophthoromycotina) and Screening of CytCo-Binding Aphid Proteins through a Pull-Down Assay. INSECTS 2024; 15:388. [PMID: 38921103 PMCID: PMC11203964 DOI: 10.3390/insects15060388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/27/2024]
Abstract
Prolonged periods of host-lethal infection by entomopathogenic fungi pose challenges to the development of biological control agents. The obligate entomopathogen C. obscurus, however, rapidly kills aphid hosts, warranting investigation. This study investigated the interaction between C. obscurus and a bean aphid Megoura crassicauda during the incubation period of infection, using transcriptome analysis to map host gene expression profiles. Results indicate C. obscurus-inoculated aphid activation of the wound healing immune responses, alongside suppression of the key molecules involved in Toll signaling, melanization, and metabolism. Furthermore, neuromotor system-related genes were upregulated, paralleling the intoxication observed in a nematode pest treated with C. obscurus-derived CytCo protein. To deepen interaction insights, a His-tag pull-down assay coupled with mass spectrometry analysis was conducted using CytCo as a bait to screen for potential aphid protein interactors. The proteins were identified based on the assembled transcriptome, and eleven transmembrane proteins were predicted to bind to CytCo. Notably, a protein of putatively calcium-transporting ATPase stood out with the highest confidence. This suggests that CytCo plays a vital role in C. obscurus killing aphid hosts, implicating calcium imbalance. In conclusion, C. obscurus effectively inhibits aphid immunity and exhibits neurotoxic potential, expediting the infection process. This finding facilitates our understanding of the complex host-pathogen interactions and opens new avenues for exploring biological pest management strategies in agroforestry.
Collapse
Affiliation(s)
- Jiaqin Zhu
- Jixian Honors College, Zhejiang A&F University, Hangzhou 311300, China;
| | - Yaqi Fu
- National Joint Local Engineering Laboratory of Biopesticide High-Efficient Preparation, College of Forestry & Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (Y.F.); (L.Z.); (T.Y.)
| | - Lvhao Zhang
- National Joint Local Engineering Laboratory of Biopesticide High-Efficient Preparation, College of Forestry & Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (Y.F.); (L.Z.); (T.Y.)
| | - Tian Yang
- National Joint Local Engineering Laboratory of Biopesticide High-Efficient Preparation, College of Forestry & Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (Y.F.); (L.Z.); (T.Y.)
| | - Xiang Zhou
- National Joint Local Engineering Laboratory of Biopesticide High-Efficient Preparation, College of Forestry & Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (Y.F.); (L.Z.); (T.Y.)
| |
Collapse
|
4
|
Solano-González S, Castro-Vásquez R, Molina-Bravo R. Genomic Characterization and Functional Description of Beauveria bassiana Isolates from Latin America. J Fungi (Basel) 2023; 9:711. [PMID: 37504700 PMCID: PMC10381237 DOI: 10.3390/jof9070711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 07/29/2023] Open
Abstract
Beauveria bassiana is an entomopathogenic fungus used in agriculture as a biological controller worldwide. Despite being a well-studied organism, there are no genomic studies of B. bassiana isolates from Central American and Caribbean countries. This work characterized the functional potential of eight Neotropical isolates and provided an overview of their genomic characteristics, targeting genes associated with pathogenicity, the production of secondary metabolites, and the identification of CAZYmes as tools for future biotechnological applications. In addition, a comparison between these isolates and reference genomes was performed. Differences were observed according to geographical location and the lineages of the B. bassiana complex to which each isolate belonged.
Collapse
Affiliation(s)
- Stefany Solano-González
- Laboratorio de Bioinformática Aplicada (LABAP), Escuela de Ciencias Biológicas, Universidad Nacional, Heredia 40104, Costa Rica
| | - Ruth Castro-Vásquez
- Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Ramón Molina-Bravo
- Biotecnología Vegetal y Recursos Genéticos para el Fitomejoramiento (BIOVERFI), Escuela de Ciencias Agrarias, Universidad Nacional, Heredia 40104, Costa Rica
| |
Collapse
|
5
|
Asad S, Priyashantha AKH, Tibpromma S, Luo Y, Zhang J, Fan Z, Zhao L, Shen K, Niu C, Lu L, Promputtha I, Karunarathna SC. Coffee-Associated Endophytes: Plant Growth Promotion and Crop Protection. BIOLOGY 2023; 12:911. [PMID: 37508343 PMCID: PMC10376224 DOI: 10.3390/biology12070911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023]
Abstract
Endophytic microbes are a ubiquitous group of plant-associated communities that colonize the intercellular or intracellular host tissues while providing numerous beneficial effects to the plants. All the plant species are thought to be associated with endophytes, majorly constituted with bacteria and fungi. During the last two decades, there has been a considerable movement toward the study of endophytes associated with coffee plants. In this review, the main consideration is given to address the coffee-associated endophytic bacteria and fungi, particularly their action on plant growth promotion and the biocontrol of pests. In addition, we sought to identify and analyze the gaps in the available research. Additionally, the potential of endophytes to improve the quality of coffee seeds is briefly discussed. Even though there are limited studies on the subject, the potentiality of coffee endophytes in plant growth promotion through enhancing nitrogen fixation, availability of minerals, nutrient absorption, secretion of phytohormones, and other bioactive metabolites has been well recognized. Further, the antagonistic effect against various coffee pathogenic bacteria, fungi, nematodes, and also insect pests leads to the protection of the crop. Furthermore, it is recognized that endophytes enhance the sensory characteristics of coffee as a new field of study.
Collapse
Affiliation(s)
- Suhail Asad
- School of Biology and Chemistry, Pu'er University, Pu'er 665000, China
| | | | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Yinling Luo
- School of Biology and Chemistry, Pu'er University, Pu'er 665000, China
| | - Jianqiang Zhang
- School of Biology and Chemistry, Pu'er University, Pu'er 665000, China
| | - Zhuqing Fan
- School of Biology and Chemistry, Pu'er University, Pu'er 665000, China
| | - Likun Zhao
- School of Biology and Chemistry, Pu'er University, Pu'er 665000, China
| | - Ke Shen
- School of Biology and Chemistry, Pu'er University, Pu'er 665000, China
| | - Chen Niu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou 570100, China
| | - Li Lu
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Samantha C Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- National Institute of Fundamental Studies (NIFS), Hantana Road, Kandy 20000, Sri Lanka
| |
Collapse
|
6
|
Park SE, Kim JC, Im Y, Kim JS. Pathogenesis and defense mechanism while Beauveria bassiana JEF-410 infects poultry red mite, Dermanyssus gallinae. PLoS One 2023; 18:e0280410. [PMID: 36800366 PMCID: PMC9937463 DOI: 10.1371/journal.pone.0280410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/28/2022] [Indexed: 02/18/2023] Open
Abstract
The poultry red mite, Dermanyssus gallinae (Mesostigmata: Dermanyssidae), is a major pest that causes great damage to chicken egg production. In one of our previous studies, the management of red mites using entomopathogenic fungi was evaluated, and the acaricidal fungus Beauveria bassiana JEF-410 was selected for further research. In this study, we tried to elucidate the pathogenesis of B. bassiana JEF-410 and the defense mechanisms of red mites at a transcriptome level. Red mites collected from a chicken farm were treated with B. bassiana JEF-410. When the mortality of infected red mites reached 50%, transcriptome analyses were performed to determine the interaction between B. bassiana JEF-410 and red mites. Uninfected red mites and non-infecting fungus served as controls. In B. bassiana JEF-410, up-regulated gene expression was observed in tryptophan metabolism and secondary metabolite biosynthesis pathways. Genes related to acetyl-CoA synthesis were up-regulated in tryptophan metabolism, suggesting that energy metabolism and stress management were strongly activated. Secondary metabolites associated with fungal up-regulated DEGs were related to the production of substances toxic to insects such as beauvericin and beauveriolide, efflux pump of metabolites, energy production, and resistance to stress. In red mites, physical and immune responses that strengthen the cuticle against fungal infection were highly up-regulated. From these gene expression analyses, we identified essential factors for fungal infection and subsequent defenses of red mites. These results will serve as a strong platform for explaining the interaction between B. bassiana JEF-410 and red mites in the stage of active infection.
Collapse
Affiliation(s)
- So Eun Park
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju, Korea
| | - Jong-Cheol Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju, Korea
| | - Yeram Im
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju, Korea
| | - Jae Su Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju, Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Korea
- * E-mail:
| |
Collapse
|
7
|
Baek S, Noh MY, Mun S, Lee SJ, Arakane Y, Kim JS. Ultrastructural analysis of beetle larva cuticles during infection with the entomopathogenic fungus, Beauveria bassiana. PEST MANAGEMENT SCIENCE 2022; 78:3356-3364. [PMID: 35509233 DOI: 10.1002/ps.6962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/16/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Beauveria bassiana is one of the commercially available entomopathogenic fungi (EPF), and a number of isolates with high virulence and broad host spectrum have been used to control agricultural and forest pests. Although the functional importance of genes in EPFs' pathogenesis have been extensively studied, the precise ultrastructural mechanism of the fungal infection, particularly penetration of the host insect cuticles, is not well understood. RESULTS In this study, we investigated the morphology and ultrastructure of the larval cuticle of the red flour beetle, Tribolium castaneum, after treatment with B. bassiana ERL1170 expressing an enhanced green fluorescent protein (Bb-eGFP). The Bb-eGFP showed high virulence against the larvae, with approximately 90% mortality at 48 h after treatment (HAT) and 100% at 72 HAT under our infection conditions. In these larvae, the regions of the body wall with flexible cuticles, such as the ventral and ventrolateral thorax and abdomen, became darkly melanized, but there was little to no melanization in the rigid dorsal cuticular structures. Confocal microscopy and transmission electron microscopy (TEM) indicated that germinated conidia on the surface of the larval cuticle were evident at 6 HAT, which formed penetration pegs and began to penetrate the several cuticle layers/laminae by 12 HAT. The penetration pegs then developed invading hyphae, some of which passed through the cuticle and reached the epidermal cells by 24 HAT. The larval cuticle was aggressively and extensively disrupted by 48 HAT, and a number of outgrowing hyphae were observed at 72 HAT. CONCLUSIONS Our results indicate that Bb-eGFP is capable of infection and penetrating T. castaneum larvae shortly after inoculation (~24 HAT) at the body regions with apparently flexible and membranous cuticles, such as the ventral intersegmental regions and the ventrolateral pleura. This study provides details on the histopathogenesis of the host cuticle by infection and penetration of EPFs, which can facilitate the management of insect pests. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sehyeon Baek
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, South Korea
| | - Mi Young Noh
- Department of Forest Resources, AgriBio Institute of Climate Change Management, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Seulgi Mun
- Department of Applied Biology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Se Jin Lee
- Department of Agricultural Life Science, Sunchon National University, Suncheon, South Korea
| | - Yasuyuki Arakane
- Department of Applied Biology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Jae Su Kim
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, South Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, South Korea
| |
Collapse
|
8
|
Plant chitinases and their role in plant defense – a comprehensive review. Enzyme Microb Technol 2022; 159:110055. [DOI: 10.1016/j.enzmictec.2022.110055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/07/2022] [Accepted: 04/25/2022] [Indexed: 12/22/2022]
|
9
|
Roodi D, Millner JP, McGill CR, Johnson RD, Hea SY, Brookes JJ, Glare TR, Card SD. Development of Plant-Fungal Endophyte Associations to Suppress Phoma Stem Canker in Brassica. Microorganisms 2021; 9:microorganisms9112387. [PMID: 34835512 PMCID: PMC8620040 DOI: 10.3390/microorganisms9112387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022] Open
Abstract
Endophytic microorganisms are found within the tissues of many plants species, with some conferring several benefits to the host plant including resistance to plant diseases. In this study, two putative endophytic fungi that were previously isolated from wild seeds of Brassica, identified as Beauveria bassiana and Pseudogymnoascus pannorum, were inoculated into cultivars of three Brassica species—Brassica napus, Br. rapa and Br. oleracea. Both fungal endophytes were reisolated from above- and below-ground tissues of inoculated plants at four different plant-growth stages, including cotyledon, one-leaf, two-leaf, and four-leaf stages. None of the plants colonised by these fungi exhibited any obvious disease symptoms, indicating the formation of novel mutualistic associations. These novel plant–endophyte associations formed between Brassica plants and Be. bassiana significantly inhibited phoma stem canker, a devastating disease of Brassica crops worldwide, caused by the fungal pathogen Leptosphaeria maculans. The novel association formed with P. pannorum significantly suppressed the amount of disease caused by L. maculans in one out of two experiments. Although biological control is not a new strategy, endophytic fungi with both antiinsect and antifungal activity are a highly conceivable, sustainable option to manage pests and diseases of economically important crops.
Collapse
Affiliation(s)
- Davood Roodi
- Resilient Agriculture, AgResearch Limited, Grasslands Research Centre, Private Bag 11008, Palmerston North 4410, New Zealand; (D.R.); (R.D.J.)
- School of Agriculture & Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand; (J.P.M.); (C.R.M.)
- Khorasan Razavi Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Mashhad 91769-83641, Iran
| | - James P. Millner
- School of Agriculture & Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand; (J.P.M.); (C.R.M.)
| | - Craig R. McGill
- School of Agriculture & Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand; (J.P.M.); (C.R.M.)
| | - Richard D. Johnson
- Resilient Agriculture, AgResearch Limited, Grasslands Research Centre, Private Bag 11008, Palmerston North 4410, New Zealand; (D.R.); (R.D.J.)
| | - Shen-Yan Hea
- Digital Agriculture, AgResearch Limited, Invermay Agricultural Centre, Private Bag 50034, Mosgiel 9053, New Zealand;
| | - Jenny J. Brookes
- Bio-Protection Research Centre, P.O. Box 85084, Lincoln University, Lincoln 7647, New Zealand; (J.J.B.); (T.R.G.)
| | - Travis R. Glare
- Bio-Protection Research Centre, P.O. Box 85084, Lincoln University, Lincoln 7647, New Zealand; (J.J.B.); (T.R.G.)
| | - Stuart D. Card
- Resilient Agriculture, AgResearch Limited, Grasslands Research Centre, Private Bag 11008, Palmerston North 4410, New Zealand; (D.R.); (R.D.J.)
- Correspondence:
| |
Collapse
|