1
|
Gawel L, Powell EC, Brock M, Taylor LA. Conspicuous stripes on prey capture attention and reduce attacks by foraging jumping spiders. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230907. [PMID: 38026030 PMCID: PMC10663800 DOI: 10.1098/rsos.230907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Many animals avoid predation using aposematic displays that pair toxic/dangerous defences with conspicuous achromatic warning patterns, such as high-contrast stripes. To understand how these prey defences work, we need to understand the decision-making of visual predators. Here we gave two species of jumping spiders (Phidippus regius and Habronattus trimaculatus) choice tests using live termites that had their back patterns manipulated using paper capes (solid white, solid black, striped). For P. regius, black and striped termites were quicker to capture attention. Yet despite this increased attention, striped termites were attacked at lower rates than either white or black. This suggests that the termite's contrast with the background elicits attention, but the internal striped body patterning reduces attacks. Results from tests with H. trimaculatus were qualitatively similar but did not meet the threshold for statistical significance. Additional exploratory analyses suggest that attention to and aversion to stripes is at least partially innate and provide further insight into how decision-making played out during trials. Because of their rich diversity (over 6500 species) that includes variation in natural history, toxin susceptibility and degree of colour vision, jumping spiders are well suited to test broad generalizations about how and why aposematic displays work.
Collapse
Affiliation(s)
- Lauren Gawel
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611, USA
| | - Erin C. Powell
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611, USA
- Florida State Collection of Arthropods, Florida Department of Agriculture and Consumer Services, Division of Plant Industry, 1911 SW 34th St, Gainesville, FL 32608, USA
| | - Michelle Brock
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611, USA
| | - Lisa A. Taylor
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Kikuchi DW, Allen WL, Arbuckle K, Aubier TG, Briolat ES, Burdfield-Steel ER, Cheney KL, Daňková K, Elias M, Hämäläinen L, Herberstein ME, Hossie TJ, Joron M, Kunte K, Leavell BC, Lindstedt C, Lorioux-Chevalier U, McClure M, McLellan CF, Medina I, Nawge V, Páez E, Pal A, Pekár S, Penacchio O, Raška J, Reader T, Rojas B, Rönkä KH, Rößler DC, Rowe C, Rowland HM, Roy A, Schaal KA, Sherratt TN, Skelhorn J, Smart HR, Stankowich T, Stefan AM, Summers K, Taylor CH, Thorogood R, Umbers K, Winters AE, Yeager J, Exnerová A. The evolution and ecology of multiple antipredator defences. J Evol Biol 2023; 36:975-991. [PMID: 37363877 DOI: 10.1111/jeb.14192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 06/28/2023]
Abstract
Prey seldom rely on a single type of antipredator defence, often using multiple defences to avoid predation. In many cases, selection in different contexts may favour the evolution of multiple defences in a prey. However, a prey may use multiple defences to protect itself during a single predator encounter. Such "defence portfolios" that defend prey against a single instance of predation are distributed across and within successive stages of the predation sequence (encounter, detection, identification, approach (attack), subjugation and consumption). We contend that at present, our understanding of defence portfolio evolution is incomplete, and seen from the fragmentary perspective of specific sensory systems (e.g., visual) or specific types of defences (especially aposematism). In this review, we aim to build a comprehensive framework for conceptualizing the evolution of multiple prey defences, beginning with hypotheses for the evolution of multiple defences in general, and defence portfolios in particular. We then examine idealized models of resource trade-offs and functional interactions between traits, along with evidence supporting them. We find that defence portfolios are constrained by resource allocation to other aspects of life history, as well as functional incompatibilities between different defences. We also find that selection is likely to favour combinations of defences that have synergistic effects on predator behaviour and prey survival. Next, we examine specific aspects of prey ecology, genetics and development, and predator cognition that modify the predictions of current hypotheses or introduce competing hypotheses. We outline schema for gathering data on the distribution of prey defences across species and geography, determining how multiple defences are produced, and testing the proximate mechanisms by which multiple prey defences impact predator behaviour. Adopting these approaches will strengthen our understanding of multiple defensive strategies.
Collapse
Affiliation(s)
- David W Kikuchi
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
- Evolutionary Biology, Universität Bielefeld, Bielefeld, Germany
| | | | - Kevin Arbuckle
- Department of Biosciences, Swansea University, Swansea, UK
| | - Thomas G Aubier
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier Toulouse III, UMR 5174, CNRS/IRD, Toulouse, France
| | | | - Emily R Burdfield-Steel
- Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Karen L Cheney
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Klára Daňková
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marianne Elias
- Institut de Systématique, Evolution, Biodiversité, CNRS, MNHN, Sorbonne Université, EPHE, Université des Antilles, Paris, France
- Smithsonian Tropical Research Institute, Gamboa, Panama
| | - Liisa Hämäläinen
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Marie E Herberstein
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Thomas J Hossie
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Mathieu Joron
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Krushnamegh Kunte
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Brian C Leavell
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Carita Lindstedt
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Ugo Lorioux-Chevalier
- Laboratoire Écologie, Évolution, Interactions des Systèmes Amazoniens (LEEISA), Université de Guyane, CNRS, IFREMER, Cayenne, France
| | - Melanie McClure
- Laboratoire Écologie, Évolution, Interactions des Systèmes Amazoniens (LEEISA), Université de Guyane, CNRS, IFREMER, Cayenne, France
| | | | - Iliana Medina
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Viraj Nawge
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Erika Páez
- Institut de Systématique, Evolution, Biodiversité, CNRS, MNHN, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Arka Pal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Olivier Penacchio
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
- Computer Vision Center, Computer Science Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jan Raška
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tom Reader
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Bibiana Rojas
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
- Department of Biology and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Katja H Rönkä
- HiLIFE Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Daniela C Rößler
- Zukunftskolleg, University of Konstanz, Konstanz, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Candy Rowe
- Institute of Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Hannah M Rowland
- Max Planck Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Arlety Roy
- Laboratoire Écologie, Évolution, Interactions des Systèmes Amazoniens (LEEISA), Université de Guyane, CNRS, IFREMER, Cayenne, France
| | - Kaitlin A Schaal
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | | | - John Skelhorn
- Institute of Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Hannah R Smart
- Hawkesbury Institute of the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Ted Stankowich
- Department of Biological Sciences, California State University, Long Beach, California, USA
| | - Amanda M Stefan
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Kyle Summers
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | | | - Rose Thorogood
- HiLIFE Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kate Umbers
- Hawkesbury Institute of the Environment, Western Sydney University, Penrith, New South Wales, Australia
- School of Science Western Sydney University, Penrith, New South Wales, Australia
| | - Anne E Winters
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Justin Yeager
- Grupo de Biodiversidad Medio Ambiente y Salud, Universidad de Las Américas, Quito, Ecuador
| | - Alice Exnerová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|