1
|
Choi MY, Price B, Hafeez M, Martin R, Richart C, Donnell RM. Bioactive peptides inhibit feeding activity in the grey garden slug, Deroceras reticulatum. PEST MANAGEMENT SCIENCE 2024; 80:6493-6500. [PMID: 39193860 DOI: 10.1002/ps.8386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND The grey garden slug (Deroceras reticulatum) is considered the most damaging slug pest in global agriculture. Control methods primarily rely on chemical pesticides, which pose environmental risks and potential hazards to human health. There is a need for sustainable management alternatives such as biologically-based slug control options. However, the efficacy of nonchemical measures for controlling pest slug populations remains limited, particularly in the context of variable outdoor conditions. Neuropeptides and their corresponding receptors have been proposed as promising biological targets for the development of new pest management strategies. RESULTS A total of 23 bioactive peptides belonging to the PRX family, previously identified from the grey garden slug, D. reticulatum, were injected into or fed to this species. The detrimental effects of these peptides, including a reduction in body weight and an inhibition of feeding activity, were evaluated in feeding choice tests with D. reticulatum. Furthermore, the bioactive peptide formulated with a lipid particle demonstrated a feeding deterrent effect. One of the myomodulin (MM) peptides, APPLPRY, demonstrated a significant reduction in feeding activity, resulting in a reduction in slug weight or mortality in just 30 min. CONCLUSION The results represent the first evidence of a bioactive peptide having detrimental effects on D. reticulatum including causing feeding deterrent for this slug pest. The in vivo results provide insights into the potential development of active ingredients for managing slugs in the field. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Man-Yeon Choi
- USDA-ARS, Horticultural Crops Research Laboratory, Corvallis, OR, USA
| | - Briana Price
- USDA-ARS, Horticultural Crops Research Laboratory, Corvallis, OR, USA
| | - Muhammad Hafeez
- USDA-ARS, Horticultural Crops Research Laboratory, Corvallis, OR, USA
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Ruth Martin
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Casey Richart
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA
| | - Rory Mc Donnell
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
2
|
Chinta S, Vander Meer R, O’Reilly E, Choi MY. Insecticidal Effects of Receptor-Interference Isolated Bioactive Peptides on Fire Ant Colonies. Int J Mol Sci 2023; 24:13978. [PMID: 37762281 PMCID: PMC10530802 DOI: 10.3390/ijms241813978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Receptor-interference (Receptor-i) is a novel technology used to identify bioactive peptides as agonists or antagonists against a specific receptor, primarily targeting G-protein-coupled receptors (GPCRs). Using Receptor-i methodology, we targeted the pheromone biosynthesis activating neuropeptide receptor (PBAN-R) of the red imported fire ant (Solenopsis invicta). Based on previous studies, we selected four bioactive peptides cyclized with two cysteines: CVKLGSHFC, CIQQGSHFC, CERVGSHFC, and CMARYMSAC, and we conducted small-scale feeding bioassays, measuring fire ant worker mortality. All peptides reduced ant survival; however, CMARYMSAC (MARY) and CIQQGSHFC (IQQG) were the most effective and were selected for feeding trials against large, fully functional fire ant field colonies containing queen, brood, and up to 8000 workers. At the end of the experiment, day 84, synthetic peptide MARY killed over 80% of the workers and two of four queens. IQQG killed over 70% of the workers and three of four queens. The surviving two MARY queens lost an average of 21% of their starting weight. The surviving IQQG queen lost 31% of its weight. In contrast, control colony queens gained an average of 11% of their starting weight. These results provide proof-of-concept for the Receptor-i technology and will synergize applications to other agricultural and medical pests.
Collapse
Affiliation(s)
- Satya Chinta
- Center for Medical, Agricultural, and Veterinary Entomology, USDA-ARS, Gainesville, FL 32608, USA; (S.C.); (E.O.)
- Foresight Science and Technology, Hopkinton, MA 01748, USA
| | - Robert Vander Meer
- Center for Medical, Agricultural, and Veterinary Entomology, USDA-ARS, Gainesville, FL 32608, USA; (S.C.); (E.O.)
| | - Erin O’Reilly
- Center for Medical, Agricultural, and Veterinary Entomology, USDA-ARS, Gainesville, FL 32608, USA; (S.C.); (E.O.)
| | - Man-Yeon Choi
- Horticultural Crops Research Laboratory, USDA-ARS, Corvallis, OR 97330, USA
| |
Collapse
|
3
|
Corcoran JA, Han X. Improved cryopreservation media formulation reduces costs of maintenance while preserving function of genetically modified insect cells. In Vitro Cell Dev Biol Anim 2022; 58:867-876. [PMID: 36515806 DOI: 10.1007/s11626-022-00741-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022]
Abstract
Insect cell lines are an invaluable resource that facilitate various fundamental and applied research programs. Genetically engineered insect cell lines, in particular, serve as a platform through which the function of heterologously expressed proteins can be studied. However, a barrier to more widespread utilization and distribution of insect cell lines, genetically modified or not, is the technical and operational challenge associated with traditional cryopreservation methods, including their dependence on the use of liquid nitrogen facilities, animal or human serum products, and relatively high concentrations of permeating cryoprotectants (e.g., DMSO). Recent innovations in cryopreservation technologies have produced reagents with improved abilities to effectively preserve mammalian cell lines for long periods in regular laboratory deep freezers without using serum products, but their effectiveness in preserving genetically engineered insect cell lines has not yet been evaluated. In this study, we engineered Sf9 cells to express a dopamine receptor and used them as a model for evaluating the efficacy of a novel cryopreservation medium product, C80EZ®-INSECT, in not only preserving cell viability and proliferation efficiency but also maintaining the insect cell line's "functionality" after storage at -80°C. We found that the engineered Sf9 cells frozen using C80EZ®-INSECT with 5% DMSO alone and stored at -80°C for 6 mo displayed higher viability and growth rates than cells frozen using traditional fetal bovine serum (FBS)-based cryopreservation media with 10% DMSO that were stored at -80°C or in liquid nitrogen for the same period of time. We also found that after 6 mo of storage at -80°C or in liquid nitrogen the cells retained a responsiveness to dopamine comparable to that of the initial cell line, regardless of the cryopreservation reagent used. These results suggest that, due to the unique characteristics of C80EZ®-INSECT in preventing ice recrystallization and reducing ice crystal size and cellular apoptosis during cryostorage procedures, it is an effective cryopreservation reagent for genetically engineered Sf9 cells, and it practically eliminates the need for liquid nitrogen-based storage facilities and FBS-based cryopreservation formulations, as well as reduces the use of permeating cryoprotectants.
Collapse
Affiliation(s)
- Jacob A Corcoran
- Biological Control of Insects Research Laboratory, USDA - Agricultural Research Service, 1503 S. Providence Rd, Columbia, MO, 65203, USA.
| | - Xu Han
- School of Medicine, University of Missouri, Columbia, MO, 65211, USA
- CryoCrate LLC, Columbia, MO, 65211, USA
| |
Collapse
|
4
|
Matsuo R, Matsuo Y. Regional expression of neuropeptides in the retina of the terrestrial slug Limax valentianus (Gastropoda, Stylommatophora, Limacidae). J Comp Neurol 2022; 530:1551-1568. [PMID: 34979594 DOI: 10.1002/cne.25296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 11/12/2022]
Abstract
Gastropods use lens-bearing eyes to detect ambient light. The retina contains photoreceptors that directly project to the brain. Here we identified the neurotransmitters that the retinal cells use for projection to the brain in the terrestrial slug Limax. We identified 12 genes encoding neuropeptides as well as a novel vesicular glutamate transporter, a marker of glutamatergic neuron, expressed in the retinal cells. Spatial expression profiles of the neuropeptide genes were determined by in situ hybridization. WWamide/MIP1/Pedal peptide2 were co-expressed in the neurons of the accessory retina. In the main retina, prohormone-4 was expressed in the ventro-lateral region. Clionin was expressed in the ventro-medial region. Pedal peptide was expressed in the anterior region of the main retina and in the accessory retina. Enterin was expressed in many neurons, including the accessory retina, but not in the dorsal region. FxRIamide1 and 2 were co-expressed in the posterior region. Prohormone-4 variant was uniformly expressed in many neurons but scarcely in the accessory retina. MIP2 was widely expressed throughout the dorso-ventral axis in the posterio-lateral region of the main retina. Myo1 was expressed in many neurons of the main retina but predominantly in the dorsal region. These expression patterns were confirmed by immunohistochemistry with specific antibodies against the neuropeptides. Projections of these peptidergic retinal neurons were confirmed by immunostaining of the optic nerve. Our present study revealed regional differentiation of the retina with respect to the neurotransmitters that the retinal cells use. neuropeptides, retina, neurotransmitter, gastropod, Lehmannia This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ryota Matsuo
- Department of Environmental Sciences, International College of Arts and Sciences, Fukuoka Women's University
| | - Yuko Matsuo
- Department of Environmental Sciences, International College of Arts and Sciences, Fukuoka Women's University
| |
Collapse
|
5
|
Bioactive Modified Non-Wovens as a Novel Approach of Plants Protection against Invasive Slugs. MATERIALS 2021; 14:ma14237403. [PMID: 34885555 PMCID: PMC8658995 DOI: 10.3390/ma14237403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/29/2022]
Abstract
Invasive slugs generate significant problems in the area of horticultural and agricultural production. Despite the multitude of methods to reduce the pest population, including preventive, mechanical, agrotechnical, cultivation, biological, and chemical treatments, no effective plant protection strategy has been developed so far. In this paper, a solution based on modified non-woven fabric with bioactive molluscicidal properties using the extract of tansy flower, metaldehyde, and abamectin (Vertigo® 018 EC) was proposed. All modified mats show significant anti-slug properties in comparison to control, and molluscicidal properties depend on the type of active substance. Non-woven modified with commonly used metaldehyde demonstrated fast action against slugs and presents the highest efficiency. The effectiveness of non-woven mats with Vertigo® 018 EC is lower than for the mats with metaldehyde but higher than for the mats modified with tansy flower extract. The proposed solution will enable removing and neutralization of molluscicide from the fields, after the efficient pest control, according to circular economy principles. Moreover, it may allow for better control of the molluscicide release to the environment in comparison to widely used pellets, and contribute to the virtual protection of plants against invasive slugs.
Collapse
|
6
|
Corcoran J, Goodman CL, Saathoff S, Ringbauer JA, Guo Y, Bonning B, Stanley D. Cell lines derived from the small hive beetle, Aethina tumida, express insecticide targets. In Vitro Cell Dev Biol Anim 2021; 57:849-855. [PMID: 34792733 DOI: 10.1007/s11626-021-00633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Jacob Corcoran
- Biological Control of Insects Research Laboratory, USDA - Agricultural Research Service, 1503 S. Providence Rd, Columbia, MO, 65203, USA.
| | - Cynthia L Goodman
- Biological Control of Insects Research Laboratory, USDA - Agricultural Research Service, 1503 S. Providence Rd, Columbia, MO, 65203, USA
| | - Stephen Saathoff
- Biological Control of Insects Research Laboratory, USDA - Agricultural Research Service, 1503 S. Providence Rd, Columbia, MO, 65203, USA
| | - Joseph A Ringbauer
- Biological Control of Insects Research Laboratory, USDA - Agricultural Research Service, 1503 S. Providence Rd, Columbia, MO, 65203, USA
| | - Ya Guo
- Entomology and Nematology Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Bryony Bonning
- Entomology and Nematology Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - David Stanley
- Biological Control of Insects Research Laboratory, USDA - Agricultural Research Service, 1503 S. Providence Rd, Columbia, MO, 65203, USA
| |
Collapse
|