1
|
Zhang Z, Wang X, Li S, Fu Y, Li Y, Nawaz S, Chen J, Yang G, Li J, Shi D. Isolation of a Virulent Clostridium perfringens Strain from Elaphurus davidianus and Characterization by Whole-Genome Sequence Analysis. Curr Issues Mol Biol 2024; 46:7169-7186. [PMID: 39057068 PMCID: PMC11276296 DOI: 10.3390/cimb46070427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Clostridium perfringens (C. perfringens) is an important veterinary pathogen and a noteworthy threat to human and animal health. Recently, there has been a significant rise in the number of moose fatalities caused by this rare, endemic species in China. Currently, there is an increasing trend in conducting whole-genome analysis of C. perfringens strains originating from pigs and chickens, whereas fewer studies have been undertaken on Elaphurus davidianus-originating strains at the whole-genome level. Our laboratory has identified and isolated five C. perfringens type A from affected Elaphurus davidianus. The current study identified the most potent strain of C. perfringens, which originated from Elaphurus davidianus, and sequenced its genome to reveal virulence genes and pathogenicity. Our findings show that strain CX1-4 exhibits the highest levels of phospholipase activity, hemolytic activity, and mouse toxicity compared to the other four isolated C. perfringens type A strains. The chromosome sequence length of the CX1-4 strain was found to be 3,355,389 bp by complete genome sequencing. The current study unveils the genomic characteristics of C. perfringens type A originating from Elaphurus davidianus. It provides a core foundation for further investigation regarding the prevention and treatment of such infectious diseases in Elaphurus davidianus.
Collapse
Affiliation(s)
- Zhao Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Provincial Wildlife Rescue Center, Wuhan 430070, China
| | - Xiao Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Siyuan Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuhang Fu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Chen
- Hubei Provincial Wildlife Rescue Center, Wuhan 430070, China
| | - Guoxiang Yang
- Hubei Provincial Wildlife Rescue Center, Wuhan 430070, China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Daoliang Shi
- Hubei Provincial Wildlife Rescue Center, Wuhan 430070, China
- Department of Forestry Ecology, Hubei Ecology Polytechnic College, Wuhan 430070, China
| |
Collapse
|
2
|
Ueda K, Kawahara K, Kimoto N, Yamaguchi Y, Yamada K, Oki H, Yoshida T, Matsuda S, Matsumoto Y, Motooka D, Kawatsu K, Iida T, Nakamura S, Ohkubo T, Yonogi S. Analysis of the complete genome sequences of Clostridium perfringens strains harbouring the binary enterotoxin BEC gene and comparative genomics of pCP13-like family plasmids. BMC Genomics 2022; 23:226. [PMID: 35321661 PMCID: PMC8941779 DOI: 10.1186/s12864-022-08453-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background BEC-producing Clostridium perfringens is a causative agent of foodborne gastroenteritis. It was first reported in 2014, and since then, several isolates have been identified in Japan and the United Kingdom. The novel binary ADP-ribosylating toxin BEC, which consists of two components (BECa and BECb), is encoded on a plasmid that is similar to pCP13 and harbours a conjugation locus, called Pcp, encoding homologous proteins of the type 4 secretion system. Despite the high in vitro conjugation frequency of pCP13, its dissemination and that of related plasmids, including bec-harbouring plasmids, in the natural environment have not been characterised. This lack of knowledge has limited our understanding of the genomic epidemiology of bec-harbouring C. perfringens strains. Results In this study, we determined the complete genome sequences of five bec-harbouring C. perfringens strains isolated from 2009 to 2019. Each isolate contains a ~ 3.36 Mbp chromosome and 1–3 plasmids of either the pCW3-like family, pCP13-like family, or an unknown family, and the bec-encoding region in all five isolates was located on a ~ 54 kbp pCP13-like plasmid. Phylogenetic and SNP analyses of these complete genome sequences and the 211 assembled C. perfringens genomes in GenBank showed that although these bec-harbouring strains were split into two phylogenetic clades, the sequences of the bec-encoding plasmids were nearly identical (>99.81%), with a significantly smaller SNP accumulation rate than that of their chromosomes. Given that the Pcp locus is conserved in these pCP13-like plasmids, we propose a mechanism in which the plasmids were disseminated by horizontal gene transfer. Data mining showed that strains carrying pCP13-like family plasmids were unexpectedly common (58/216 strains) and widely disseminated among the various C. perfringens clades. Although these plasmids possess a conserved Pcp locus, their ‘accessory regions’ can accommodate a wide variety of genes, including virulence-associated genes, such as becA/becB and cbp2. These results suggest that this family of plasmids can integrate various foreign genes and is transmissible among C. perfringens strains. Conclusion This study demonstrates the potential significance of pCP13-like plasmids, including bec-encoding plasmids, for the characterisation and monitoring of the dissemination of pathogenic C. perfringens strains. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08453-4.
Collapse
Affiliation(s)
- Kengo Ueda
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuki Kawahara
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Narumi Kimoto
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yusuke Yamaguchi
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuhiro Yamada
- Department of Microbiology and Medical Zoology, Aichi Prefectural Institute of Public Health, 7-6 Nagare, Tsujicho, Kita-ku, Nagoya, Aichi, 462-8576, Japan
| | - Hiroya Oki
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takuya Yoshida
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigeaki Matsuda
- Department of Bacterial Infection, Research Institute for Microbial Disease (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuki Matsumoto
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kentaro Kawatsu
- Division of Microbiology, Osaka Institute of Public Health, 1-3-69 Nakamichi, Higashinari-ku, Osaka, Osaka, 537-0025, Japan
| | - Tetsuya Iida
- Department of Bacterial Infection, Research Institute for Microbial Disease (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Center for Infectious Disease Education and Research (CiDER), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Center for Infectious Disease Education and Research (CiDER), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tadayasu Ohkubo
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Shinya Yonogi
- Department of Bacterial Infection, Research Institute for Microbial Disease (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Division of Microbiology, Osaka Institute of Public Health, 1-3-69 Nakamichi, Higashinari-ku, Osaka, Osaka, 537-0025, Japan.
| |
Collapse
|