1
|
Gupta S, Dubey A, Rathore AS. Role of Charge Heterogeneity on Physical Stability of Monoclonal Antibody Biotherapeutic Products. Pharm Res 2024; 41:1443-1454. [PMID: 38951451 DOI: 10.1007/s11095-024-03730-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024]
Abstract
PURPOSE Chemical modifications in monoclonal antibodies can change hydrophobicity, charge heterogeneity as well as conformation, which eventually can impact their physical stability. In this study, the effect of the individual charge variants on physical stability and aggregation propensity in two different buffer conditions used during downstream purification was investigated. METHODS The charge variants were separated using semi-preparative cation exchange chromatography and buffer exchanged in the two buffers with pH 6.0 and 3.8. Subsequently each variant was analysed for size heterogeneity using size exclusion chromatography and dynamic light scattering, conformational stability, colloidal stability, and aggregation behaviour under accelerated stability conditions. RESULTS Size variants in each charge variant were similar in both pH conditions when analyzed without extended storage. However, conformational stability was lower at pH 3.8 than pH 6.0. All charge variants showed similar apparent melting temperature at pH 6.0. In contrast, at pH 3.8 variants A3, A5, B2, B3 and B4 display lower Tm, suggesting reduced conformational stability. Further, A2, A3 and A5 exhibit reduced colloidal stability at pH 3.8. In general, acidic variants are more prone to aggregation than basic variants. CONCLUSION Typical industry practice today is to examine in-process intermediate stability with acidic species and basic species taken as a single category each. We suggest that perhaps stability evaluation needs to be performed at specie level as different acidic or basic species have different stability and this knowledge can be used for clever designing of the downstream process to achieve a stable product.
Collapse
Affiliation(s)
- Surbhi Gupta
- Department of Chemical Engineering, DBT Centre of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Ankita Dubey
- Department of Chemical Engineering, DBT Centre of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, DBT Centre of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
2
|
Malani H, Shrivastava A, Nupur N, Rathore AS. LC-MS Characterization and Stability Assessment Elucidate Correlation Between Charge Variant Composition and Degradation of Monoclonal Antibody Therapeutics. AAPS J 2024; 26:42. [PMID: 38570351 DOI: 10.1208/s12248-024-00915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
Aggregation stability of monoclonal antibody (mAb) therapeutics is influenced by many critical quality attributes (CQA) such as charge and hydrophobic variants in addition to environmental factors. In this study, correlation between charge heterogeneity and stability of mAbs for bevacizumab and trastuzumab has been investigated under a variety of stresses including thermal stress at 40 °C, thermal stress at 55 °C, shaking (mechanical), and low pH. Size- and charge-based heterogeneities were monitored using analytical size exclusion chromatography (SEC) and cation exchange chromatography (CEX), respectively, while dynamic light scattering was used to assess changes in hydrodynamic size. CEX analysis revealed an increase in cumulative acidic content for all variants of both mAbs post-stress treatment attributed to increased deamidation. Higher charge heterogeneity was observed in variants eluting close to the main peak than the ones eluting further away (25-fold and 42-fold increase in acidic content for main and B1 of bevacizumab and 19-fold for main of trastuzumab, respectively, under thermal stress; 50-fold increase in acidic for main and B1 of bevacizumab and 10% rise in basic content of main of trastuzumab under pH stress). Conversely, variants eluting far away from main exhibit greater aggregation as compared to close-eluting ones. Aggregation kinetics of variants followed different order for the different stresses for both mAbs (2nd order for thermal and pH stresses and 0th order for shaking stress). Half-life of terminal charge variants of both mAbs was 2- to 8-fold less than main indicating increased degradation propensity.
Collapse
Affiliation(s)
- Himanshu Malani
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Anuj Shrivastava
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Neh Nupur
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
3
|
Gupta T, Seshadri S. Charge variants of proposed biosimilar to Omalizumab: Isolation, purification and analysis by HPLC methods. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:64-71. [PMID: 37708991 DOI: 10.1016/j.pharma.2023.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/16/2023]
Abstract
Omalizumab (Xolair) is a humanized monoclonal antibody derived by recombinant DNA technology. It binds specifically to immunoglobulin E (IgE) which plays a major role in allergic reaction by releasing histamine and other inflammatory factors from mast cells. Omalizumab binds circulatory IgE with high affinity and prevents from its binding to mast cell receptor. Charge variants are one of the critical quality attributes (CQAs) in biological drug development and sources of heterogeneity which needs to be considered in biosimilarity assessment. In this study, biosimilar product of Xolair was expressed in mammalian cell culture process in laboratory to isolate charge variants (acidic, main peak and basic). Different charge variants were isolated from intermediate purified biosimilar product of Xolair. Isolated charge variants were purified with preparative cation exchange chromatography technique and characterized with different analytical tools includes size exclusion chromatography (SEC-HPLC) and cation exchange chromatography (CEX-HPLC). Purity of acidic, main peak and basic variants was 99.58%, 99.98% and 98.64% respectively as per SEC-HPLC and according to CEX-HPLC purity was 94.25%, 95.58% and 91.33% respectively. The study data indicates that isolated charge variants were purified with desired purity and can be further used for process characterization, in vitro potency and in vivo kinetics studies.
Collapse
Affiliation(s)
- Tarun Gupta
- Institute of Science, Nirma University, 382481 Ahmedabad, Gujarat, India; Downstream Process Development, Kashiv BioSciences Pvt Ltd., 382210 Ahmedabad, Gujarat, India
| | - Sriram Seshadri
- Institute of Science, Nirma University, 382481 Ahmedabad, Gujarat, India.
| |
Collapse
|
4
|
Kumar S, Peruri V, Rathore AS. An Online Two-Dimensional Approach to Characterizing the Charge-Based Heterogeneity of Recombinant Monoclonal Antibodies Using a 2D-CEX-AEX-MS Workflow. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2801-2810. [PMID: 37994779 DOI: 10.1021/jasms.3c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Assessment of product quality attributes such as charge heterogeneity is an upmost requisite for the release of a monoclonal antibody (mAb). Analytical techniques, such as cation-exchange chromatography (CEX), accomplish this, causing the mAb to separate into acidic, main species, and basic variants. Here, an online volatile-salt-containing two-dimensional liquid chromatography (2D-LC) method coupled with mass spectrometry (MS) was performed to characterize the charge heterogeneity of mAbs using CEX chromatography in the first dimension (D1) and anion-exchange chromatography (AEX) in the second dimension (D2). The main peak of the CEX profile of D1 was transferred through a 2D heart-cut method to D2 for further analysis by the AEX-MS method. In the CEX method, mAb A showed 10 distinct variants, while the AEX method resulted in eight variants. However, a total of 13 variants were successfully resolved for mAb A in the 2D method. Similarly, mAb B exhibited seven variants in the CEX method and four variants in the AEX method, but the 2D-LC method revealed a total of nine variants for mAb B. Likewise, mAb C displayed seven variants in CEX and seven variants in AEX, whereas the 2D-LC method unveiled a total of 11 variants for mAb C. Additionally, native MS analysis revealed that the resolved charge variants were identified as amidation, oxidation, and isomerization of Asp variants in the main peak, which were not resolved in stand-alone methods. The present study demonstrates how 2D-LC can assist in identifying minor variations in charge distribution or conformation of mAb variants that would otherwise not be picked up by a single analytical method alone.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vineela Peruri
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
5
|
Lin Y, Moyle AB, Beaumont VA, Liu LL, Polleck S, Liu H, Shi H, Rouse JC, Kim HY, Zhang Y, Gross ML. Characterization of Higher Order Structural Changes of a Thermally Stressed Monoclonal Antibody via Mass Spectrometry Footprinting and Other Biophysical Approaches. Anal Chem 2023; 95:16840-16849. [PMID: 37933954 PMCID: PMC10909587 DOI: 10.1021/acs.analchem.3c02422] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Characterizing changes in the higher order structure (HOS) of monoclonal antibodies upon stressed conditions is critical to gaining a better understanding of the product and process. One single biophysical approach may not be best suited to assess HOS comprehensively; thus, the synergy from multiple, complementary approaches improves characterization accuracy and resolution. In this study, we employed two mass spectrometry (MS )-based footprinting techniques, namely, fast photochemical oxidation of proteins (FPOP)-MS and hydrogen-deuterium exchange (HDX)-MS, supported by dynamic light scattering (DLS), differential scanning calorimetry (DSC), circular dichroism (CD), and nuclear magnetic resonance (NMR) to study changes to the HOS of a mAb upon thermal stress. The biophysical techniques report a nuanced characterization of the HOS in which CD detects no changes to the secondary or tertiary structure, yet DLS measurements show an increase in the hydrodynamic radius. DSC indicates that the stability decreases, and chemical or conformational changes accumulate with incubation time according to NMR. Furthermore, whereas HDX-MS does not indicate HOS changes, FPOP-MS footprinting reveals conformational changes at residue resolution for some amino acids. The local phenomena observed with FPOP-MS indicate that several residues show various patterns of degradation during thermal stress: no change, an increase in solvent exposure, and a biphasic response to solvent exposure. All evidences show that FPOP-MS efficiently resolves subtle structural changes and novel degradation pathways upon thermal stress treatment at residue-level resolution.
Collapse
Affiliation(s)
- Yanchun Lin
- Department of Chemistry, Washington University in St Louis, St Louis, Missouri 63105, United States
| | - Austin B Moyle
- Department of Chemistry, Washington University in St Louis, St Louis, Missouri 63105, United States
| | - Victor A Beaumont
- Pharmaceutical Sciences Small Molecules, Analytical Research and Development, Pfizer, Inc., Sandwich CT13 9FF, U.K
| | - Lucy L Liu
- Biotherapeutics Pharmaceutical Sciences, Analytical Research and Development, Pfizer, Inc., Andover, Massachusetts 01810, United States
| | - Sharon Polleck
- Biotherapeutics Pharmaceutical Sciences, Analytical Research and Development, Pfizer, Inc., Andover, Massachusetts 01810, United States
| | - Haijun Liu
- Department of Chemistry, Washington University in St Louis, St Louis, Missouri 63105, United States
| | - Heliang Shi
- Global Product Development, Rare Disease Statistics, Pfizer, Inc., New York, New York 10017, United States
| | - Jason C Rouse
- Biotherapeutics Pharmaceutical Sciences, Analytical Research and Development, Pfizer, Inc., Andover, Massachusetts 01810, United States
| | - Hai-Young Kim
- Biotherapeutics Pharmaceutical Sciences, Analytical Research and Development, Pfizer, Inc., Andover, Massachusetts 01810, United States
| | - Ying Zhang
- Biotherapeutics Pharmaceutical Sciences, Analytical Research and Development, Pfizer, Inc., Andover, Massachusetts 01810, United States
| | - Michael L Gross
- Department of Chemistry, Washington University in St Louis, St Louis, Missouri 63105, United States
| |
Collapse
|
6
|
Quiñonez-Alvarado MG, Chávez-Hurtado P, Caro-Palomera JC, Niño-Trejo OL, Jiménez-Dolores JI, Muñoz-Villegas P, Baiza-Durán L, Quintana-Hau JD. Glycosylation differences of an anti-VEGF monoclonal antibody (PRO-169) and its extensive comparison with Bevacizumab. Biologicals 2023; 84:101711. [PMID: 37748325 DOI: 10.1016/j.biologicals.2023.101711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
PRO-169 is an anti-VEGF monoclonal antibody developed by Laboratorios Sophia that shares its sequence with Bevacizumab (BVZ); though, PRO-169 is intended for intravitreal administration. In this study, analytical characterization showed that PRO-169 had glycosylation differences in comparison to BVZ reference product (RP); since it had more content of G1F, G2F, sialic acid and high mannose. Further investigation was performed to evaluate if differences between both products would affect the efficacy and safety profile of PRO-169. PRO-169 had no alteration in its in vitro biological activity; moreover, no cytotoxicity or immunogenicity concerns should be expected as demonstrated by different orthogonal methods at analytical, in vitro and in vivo assays. These results support moving to the clinical testing of PRO-169 since no major complications will be expected with its clinical use for the treatment of ophthalmic diseases.
Collapse
Affiliation(s)
- Mayra G Quiñonez-Alvarado
- Research and Development Department, Centro de Investigación Sophia S.A. de C.V, Paseo Del Norte 4896, Guadalajara Technology Park, Zapopan, 45010, Jalisco, Mexico
| | - Paulina Chávez-Hurtado
- Research and Development Department, Centro de Investigación Sophia S.A. de C.V, Paseo Del Norte 4896, Guadalajara Technology Park, Zapopan, 45010, Jalisco, Mexico
| | - Jesús C Caro-Palomera
- Research and Development Department, Centro de Investigación Sophia S.A. de C.V, Paseo Del Norte 4896, Guadalajara Technology Park, Zapopan, 45010, Jalisco, Mexico
| | - Oriana L Niño-Trejo
- Research and Development Department, Centro de Investigación Sophia S.A. de C.V, Paseo Del Norte 4896, Guadalajara Technology Park, Zapopan, 45010, Jalisco, Mexico
| | - José I Jiménez-Dolores
- Research and Development Department, Centro de Investigación Sophia S.A. de C.V, Paseo Del Norte 4896, Guadalajara Technology Park, Zapopan, 45010, Jalisco, Mexico
| | - Patricia Muñoz-Villegas
- Regional Medical Affairs Department, Laboratorios Sophia S.A. de C.V, Paseo Del Norte 5255, Guadalajara Technology Park, Zapopan, 45010, Jalisco, Mexico
| | - Leopoldo Baiza-Durán
- Regional Medical Affairs Department, Laboratorios Sophia S.A. de C.V, Paseo Del Norte 5255, Guadalajara Technology Park, Zapopan, 45010, Jalisco, Mexico
| | - Juan D Quintana-Hau
- Research and Development Department, Centro de Investigación Sophia S.A. de C.V, Paseo Del Norte 4896, Guadalajara Technology Park, Zapopan, 45010, Jalisco, Mexico.
| |
Collapse
|
7
|
Bhattacharya S, Rathore AS. Assessment of structural and functional similarity of biosimilar products: Bevacizumab as a case study. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1229:123896. [PMID: 37776677 DOI: 10.1016/j.jchromb.2023.123896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/21/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
The antiangiogenic drug bevacizumab is a blockbuster therapeutic pharmaceutical product that is used to treat many different types of cancer including kidney, colon, rectum, lung, and breast cancer. As a result, multiple biosimilars have been approved across the various regulatory jurisdictions in India (>20 in number till date). The rapidly growing market and acceptance of biosimilars was the motivation to perform comparability study of bevacizumab biosimilars that are presently available in the Indian market. A comprehensive analytical and functional biosimilarity assessment has been performed to examine and compare innovator product of bevacizumab (Avastin-innovator product, Roche Products (India) Pvt Ltd) and six biosimilars that are being marketed in India (Abevmy from Mylan Pharmaceuticals Pvt Ltd, Bevazza from Lupin Ltd, Bryxta from Zydus Cadila, Krabeva from Biocon, Ivzumab from RPG Life Sciences Ltd, and Advamab from Alkem Laboratories Ltd). Physiochemical characterization of drug products was performed with respect to their primary structure (intact mass, reduced mass, peptide mapping by LC-MS), higher order structure (secondary structure by FTIR, Far-UV-CD, and tertiary structure by Near-UV-CD, intrinsic fluorescence spectroscopy), impurity profile (SE-HPLC, SEC-MALS, extrinsic fluorescence: size heterogenicity, degradation, stability; DLS: hydrodynamic radius; WCX-HPLC: charge variants analysis) and post-translational modifications by measuring reduced glycans through fluorescence dye analysis. Functional characterization was performed by SPR and cell proliferation assay. Further, chemometrics based quantitative evaluation of biosimilarity has been performed by combining the data obtained from analytical characterization platform. The analysis of the analytical, functional and chemometric results revealed significant levels of similarity, with biosimilar4 being the sole exception. Despite being within product specifications, Biosimilar4 displayed significant deviations with respect to critical quality attributes, including a lower proportion of monomer content, a larger percentage of basic charge variant species, and a lower proportion of aglycosylated glycoform.
Collapse
Affiliation(s)
| | - Anurag S Rathore
- Chemical Engineering Department, Indian Institute of Technology, Delhi, India.
| |
Collapse
|
8
|
Bana AA, Sajeev N, Halder S, Abbas Masi H, Patel S, Mehta P. Comparative stability study and aggregate analysis of Bevacizumab marketed formulations using advanced analytical techniques. Heliyon 2023; 9:e19478. [PMID: 37810070 PMCID: PMC10558615 DOI: 10.1016/j.heliyon.2023.e19478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/09/2023] [Accepted: 08/23/2023] [Indexed: 10/10/2023] Open
Abstract
Bevacizumab (Bvz) is the most preferred recombinant humanized monoclonal antibody in biosimilar development due to its prominence as a standard treatment in the oncology space. Therapeutic monoclonal antibodies are typically more complex and unlikely to produce a replica. As a result, regulatory agencies allow approval of biosimilars that differ structurally and functionally from their reference product, but these differences should not have any clinical significance. To identify these significant discrepancies, it is essential to perform a thorough characterization of critical product attributes both in real-time and after storage until the product's expiration. In the present study, two Bvz biosimilar brands (Bio-1 and Bio-2) marketed in India were evaluated and compared with the reference product Avastin® to assess their degree of similarity. A comprehensive physicochemical characterization of biosimilars and reference product was performed using orthogonal techniques including LC-ESI-QTOF, MALDI-TOF, FTIR-ATR, iCIEF, rCE, nrCE, UV280, and RP-HPLC. Furthermore, Bvz formulations under study were subjected to various stress conditions of thermal (elevated temperature 50 ± 2 °C), chemical (acidic pH 3.0 ± 0.2, neutral pH 7.0 ± 0.2, and basic pH 10.0 ± 0.2), and mechanical (agitation 200 rpm) for comparative stability evaluation. Any alteration in the secondary structure of the native protein was detected and quantified using far-UV circular dichroism (CD), indicating an average of 15% and 11% loss in native antiparallel β-sheet conformation respectively in Bio-1 and Bio-2 upon exposure to elevated temperature and high pH. Additionally, covalent or non-covalent aggregates formed as a function of elevated temperature and agitation were quantified using SEC-MALS.
Collapse
Affiliation(s)
- Arpit Arunkumar Bana
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, 382481, Gujarat, India
| | - Nithin Sajeev
- Center for Cellular and Molecular Platform (C-CAMP), Bengaluru, 560065, Karnataka, India
| | - Sabyasachi Halder
- Center for Cellular and Molecular Platform (C-CAMP), Bengaluru, 560065, Karnataka, India
| | - Haidar Abbas Masi
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, 382011, Gujarat, India
| | - Shikha Patel
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, 382481, Gujarat, India
| | - Priti Mehta
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, 382481, Gujarat, India
| |
Collapse
|
9
|
Arauzo-Aguilera K, Buscajoni L, Koch K, Thompson G, Robinson C, Berkemeyer M. Yields and product comparison between Escherichia coli BL21 and W3110 in industrially relevant conditions: anti-c-Met scFv as a case study. Microb Cell Fact 2023; 22:104. [PMID: 37208750 PMCID: PMC10197847 DOI: 10.1186/s12934-023-02111-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/01/2023] [Indexed: 05/21/2023] Open
Abstract
INTRODUCTION In the biopharmaceutical industry, Escherichia coli is one of the preferred expression hosts for large-scale production of therapeutic proteins. Although increasing the product yield is important, product quality is a major factor in this industry because greatest productivity does not always correspond with the highest quality of the produced protein. While some post-translational modifications, such as disulphide bonds, are required to achieve the biologically active conformation, others may have a negative impact on the product's activity, effectiveness, and/or safety. Therefore, they are classified as product associated impurities, and they represent a crucial quality parameter for regulatory authorities. RESULTS In this study, fermentation conditions of two widely employed industrial E. coli strains, BL21 and W3110 are compared for recombinant protein production of a single-chain variable fragment (scFv) in an industrial setting. We found that the BL21 strain produces more soluble scFv than the W3110 strain, even though W3110 produces more recombinant protein in total. A quality assessment on the scFv recovered from the supernatant was then performed. Unexpectedly, even when our scFv is correctly disulphide bonded and cleaved from its signal peptide in both strains, the protein shows charge heterogeneity with up to seven distinguishable variants on cation exchange chromatography. Biophysical characterization confirmed the presence of altered conformations of the two main charged variants. CONCLUSIONS The findings indicated that BL21 is more productive for this specific scFv than W3110. When assessing product quality, a distinctive profile of the protein was found which was independent of the E. coli strain. This suggests that alterations are present in the recovered product although the exact nature of them could not be determined. This similarity between the two strains' generated products also serves as a sign of their interchangeability. This study encourages the development of innovative, fast, and inexpensive techniques for the detection of heterogeneity while also provoking a debate about whether intact mass spectrometry-based analysis of the protein of interest is sufficient to detect heterogeneity in a product.
Collapse
Affiliation(s)
| | - Luisa Buscajoni
- Biopharma Austria, Process Science, Boehringer-Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1121 Vienna, Austria
| | - Karin Koch
- Biopharma Austria, Process Science, Boehringer-Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1121 Vienna, Austria
| | - Gary Thompson
- Wellcome Trust Biological NMR Facility, School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | - Colin Robinson
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | - Matthias Berkemeyer
- Biopharma Austria, Process Science, Boehringer-Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1121 Vienna, Austria
| |
Collapse
|
10
|
Torkashvand F, Mehranfar M, Rashidi Gero M, Jafarian P, Mirabzadeh E, Azarian B, Sardari S, Vaziri B. Trastuzumab Charge Variants: a Study on Physicochemical and Pharmacokinetic Properties. IRANIAN BIOMEDICAL JOURNAL 2023; 27:108-16. [PMID: 37070702 PMCID: PMC10314757 DOI: 10.61186/ibj.3837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/28/2022] [Indexed: 12/17/2023]
Abstract
Background Post-translational modifications in bioprocessing and storage of recombinant mAbs are the main sources of charge variants. While the profile of these kinds of variants is considered an important attribute for the therapeutic mAbs, there is controversy about their direct role in safety and efficacy. In this study, the physicochemical and pharmacokinetic (PK) properties of the separated charge variants belonging to a trastuzumab potential biosimilar, were examined. Methods The acidic peaks, basic peaks, and main variants of trastuzumab were separated and enriched by semi-preparative weak cation exchange. A panel of analytical techniques was utilized to characterize the physicochemical properties of these variants. The binding affinity to HER2 and FcγRs and the PK parameters were evaluated for each variant. Results Based on the results, the charge variants of the proposed biosimilar had no significant influence on the examined efficacy and PK parameters. Conclusion During the development and production of biosimilar monoclonal antibodies, evaluating the effect of their charge variants on efficacy and PK parameters is needed.
Collapse
Affiliation(s)
- Fatemeh Torkashvand
- Biotechnology Research Centre, Pasteur Institute of Iran, Tehran, Iran
- These authors contributed equally to this work
| | - Mahsa Mehranfar
- Biotechnology Research Centre, Pasteur Institute of Iran, Tehran, Iran
- These authors contributed equally to this work
| | - Mahsa Rashidi Gero
- Biotechnology Research Centre, Pasteur Institute of Iran, Tehran, Iran
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parisa Jafarian
- Biotechnology Research Centre, Pasteur Institute of Iran, Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran branch, Islamic Azad University, Tehran, Iran
| | - Esmat Mirabzadeh
- Biotechnology Research Centre, Pasteur Institute of Iran, Tehran, Iran
| | - Bahareh Azarian
- Biotechnology Research Centre, Pasteur Institute of Iran, Tehran, Iran
| | - Soroush Sardari
- Biotechnology Research Centre, Pasteur Institute of Iran, Tehran, Iran
| | - Behrouz Vaziri
- Biotechnology Research Centre, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
11
|
Beck A, Nowak C, Meshulam D, Reynolds K, Chen D, Pacardo DB, Nicholls SB, Carven GJ, Gu Z, Fang J, Wang D, Katiyar A, Xiang T, Liu H. Risk-Based Control Strategies of Recombinant Monoclonal Antibody Charge Variants. Antibodies (Basel) 2022; 11:73. [PMID: 36412839 PMCID: PMC9703962 DOI: 10.3390/antib11040073] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 09/28/2023] Open
Abstract
Since the first approval of the anti-CD3 recombinant monoclonal antibody (mAb), muromonab-CD3, a mouse antibody for the prevention of transplant rejection, by the US Food and Drug Administration (FDA) in 1986, mAb therapeutics have become increasingly important to medical care. A wealth of information about mAbs regarding their structure, stability, post-translation modifications, and the relationship between modification and function has been reported. Yet, substantial resources are still required throughout development and commercialization to have appropriate control strategies to maintain consistent product quality, safety, and efficacy. A typical feature of mAbs is charge heterogeneity, which stems from a variety of modifications, including modifications that are common to many mAbs or unique to a specific molecule or process. Charge heterogeneity is highly sensitive to process changes and thus a good indicator of a robust process. It is a high-risk quality attribute that could potentially fail the specification and comparability required for batch disposition. Failure to meet product specifications or comparability can substantially affect clinical development timelines. To mitigate these risks, the general rule is to maintain a comparable charge profile when process changes are inevitably introduced during development and even after commercialization. Otherwise, new peaks or varied levels of acidic and basic species must be justified based on scientific knowledge and clinical experience for a specific molecule. Here, we summarize the current understanding of mAb charge variants and outline risk-based control strategies to support process development and ultimately commercialization.
Collapse
Affiliation(s)
- Alain Beck
- Centre d’Immunologie Pierre-Fabre (CIPF), 5 Avenue Napoléon III, 74160 Saint-Julien-en-Genevois, France
| | - Christine Nowak
- Protein Characterization, Alexion AstraZeneca Rare Disease, 100 College St., New Haven, CT 06510, USA
| | - Deborah Meshulam
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Kristina Reynolds
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - David Chen
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Dennis B. Pacardo
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Samantha B. Nicholls
- Protein Sciences, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Gregory J. Carven
- Research, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Zhenyu Gu
- Jasper Therapeutics, Inc., 2200 Bridge Pkwy Suite 102, Redwood City, CA 94065, USA
| | - Jing Fang
- Biological Drug Discovery, Biogen, 225 Binney St., Cambridge, MA 02142, USA
| | - Dongdong Wang
- Global Biologics, Takeda Pharmaceuticals, 300 Shire Way, Lexington, MA 02421, USA
| | - Amit Katiyar
- CMC Technical Operations, Magenta Therapeutics, 100 Technology Square, Cambridge, MA 02139, USA
| | - Tao Xiang
- Downstream Process and Analytical Development, Boston Institute of Biotechnology, 225 Turnpike Rd., Southborough, MA 01772, USA
| | - Hongcheng Liu
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| |
Collapse
|
12
|
Liu YD, Cadang L, Bol K, Pan X, Tschudi K, Jazayri M, Camperi J, Michels D, Stults J, Harris RJ, Yang F. Challenges and Strategies for a Thorough Characterization of Antibody Acidic Charge Variants. Bioengineering (Basel) 2022; 9:641. [PMID: 36354552 PMCID: PMC9687119 DOI: 10.3390/bioengineering9110641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 09/02/2023] Open
Abstract
Heterogeneity of therapeutic Monoclonal antibody (mAb) drugs are due to protein variants generated during the manufacturing process. These protein variants can be critical quality attributes (CQAs) depending on their potential impact on drug safety and/or efficacy. To identify CQAs and ensure the drug product qualities, a thorough characterization is required but challenging due to the complex structure of biotherapeutics. Past characterization studies for basic and acidic variants revealed that full characterizations were limited to the basic charge variants, while the quantitative measurements of acidic variants left gaps. Consequently, the characterization and quantitation of acidic variants are more challenging. A case study of a therapeutic mAb1 accounted for two-thirds of the enriched acidic variants in the initial characterization study. This led to additional investigations, closing the quantification gaps of mAb1 acidic variants. This work demonstrates that a well-designed study with the right choices of analytical methods can play a key role in characterization studies. Thus, the updated strategies for more complete antibody charge variant characterization are recommended.
Collapse
Affiliation(s)
- Y. Diana Liu
- Pharma Technical Development, Genentech/Roche, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | - Feng Yang
- Pharma Technical Development, Genentech/Roche, South San Francisco, CA 94080, USA
| |
Collapse
|
13
|
Ruppen I, Beydon ME, Solís C, Sacristán D, Vandenheede I, Ortiz A, Sandra K, Adhikary L. Similarity demonstrated between isolated charge variants of MB02, a biosimilar of bevacizumab, and Avastin® following extended physicochemical and functional characterization. Biologicals 2022; 77:1-15. [DOI: 10.1016/j.biologicals.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 11/02/2022] Open
|
14
|
Zeunik R, Ryuzoji AF, Peariso A, Wang X, Lannan M, Spindler LJ, Knierman M, Copeland V, Patel C, Wen Y. Investigation of immune responses to oxidation, deamidation, and isomerization in therapeutic antibodies using preclinical immunogenicity risk assessment assays. J Pharm Sci 2022; 111:2217-2229. [DOI: 10.1016/j.xphs.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 01/30/2023]
|
15
|
Singh SK, Kumar D, Nagpal S, Dubey SK, Rathore AS. A Charge Variant of Bevacizumab Offers Enhanced FcRn-Dependent Pharmacokinetic Half-Life and Efficacy. Pharm Res 2022; 39:851-865. [PMID: 35355206 DOI: 10.1007/s11095-022-03236-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Lysine variants of monoclonal antibodies (mAbs) result from incomplete clipping of the C-terminal lysine residues of the heavy chain. Although the structure of the lysine variants has been determined for several mAb products, a detailed study that investigates the impact of lysine charge variants on PK/PD and preclinical safety is yet to be published. OBJECTIVE An in-depth investigation of the impact of C- terminal lysine clipping of mAbs on safety and efficacy for bevacizumab charge variants. METHOD Charge variant isolation using semi-preparative chromatography is followed by a comparative analysis of FcRn binding, pharmacokinetics, and pharmacodynamics in relevant animal models. RESULTS K1 variant exhibited improved FcRn binding affinity (4-fold), half-life (1.3-fold), and anti-tumor activity (1.3-fold) as compared to the K0 (main) product. However, the K2 variant, even though exhibited higher FcRn affinity (2-fold), displayed lower half-life (1.6-fold) and anti-tumor activity at medium and low doses. Differential proteomic analysis revealed that seven pathways (such as glycolysis, gluconeogenesis, carbon metabolism, synthesis of amino acids) were significantly enriched. Higher efficacy of the K1 variant is likely due to higher bioavailability of the drug, leading to complete downregulation of the pathways that facilitate catering of the energy requirements of the proliferating tumor cells. On the contrary, the K2 variant exhibits a shorter half-life, resulting only in partial reduction in the metabolic/energy requirements of the growing tumor cells. CONCLUSION Overall, we conclude that the mAb half-life, dosage, and efficacy of a biotherapeutic product are significantly impacted by the charge variant profile of a biotherapeutic product.
Collapse
Affiliation(s)
- Sumit K Singh
- School of Biochemical Engineering, IIT(BHU), Varanasi, India
| | - Deepak Kumar
- Department of Chemical Engineering, IIT, DBT Center of Excellence for Biopharmaceutical Technology, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | | | - Sunil K Dubey
- R&D Healthcare Division, Emami Limited, Kolkata, India
| | - Anurag S Rathore
- Department of Chemical Engineering, IIT, DBT Center of Excellence for Biopharmaceutical Technology, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
16
|
Jakes C, Füssl F, Zaborowska I, Bones J. Rapid Analysis of Biotherapeutics Using Protein A Chromatography Coupled to Orbitrap Mass Spectrometry. Anal Chem 2021; 93:13505-13512. [PMID: 34585915 PMCID: PMC8515350 DOI: 10.1021/acs.analchem.1c02365] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Monoclonal antibodies
(mAbs) and related products undergo a wide
range of modifications, many of which can often be directly associated
to culture conditions during upstream processing. Ideally, such conditions
should be monitored and fine-tuned based on real-time or close to
real-time information obtained by the assessment of the product quality
attribute (PQA) profile of the biopharmaceutical produced, which is
the fundamental idea of process analytical technology. Therefore,
methods that are simple, quick and robust, but sufficiently powerful,
to allow for the generation of a comprehensive picture of the PQA
profile of the protein of interest are required. A major obstacle
for the analysis of proteins directly from cultures is the presence
of impurities such as cell debris, host cell DNA, proteins and small-molecule
compounds, which usually requires a series of capture and polishing
steps using affinity and ion-exchange chromatography before characterization
can be attempted. In the current study, we demonstrate direct coupling
of protein A affinity chromatography with native mass spectrometry
(ProA-MS) for development of a robust method that can be used to generate
information on the PQA profile of mAbs and related products in as
little as 5 min. The developed method was applied to several samples
ranging in complexity and stability, such as simple and more complex
monoclonal antibodies, as well as cysteine-conjugated antibody–drug
conjugate mimics. Moreover, the method demonstrated suitability for
the analysis of protein amounts of <1 μg, which suggests
applicability during early-stage development activities.
Collapse
Affiliation(s)
- Craig Jakes
- Characterisation and Comparability Laboratory, The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, County Dublin A94 X099, Ireland.,School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| | - Florian Füssl
- Characterisation and Comparability Laboratory, The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, County Dublin A94 X099, Ireland
| | - Izabela Zaborowska
- Characterisation and Comparability Laboratory, The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, County Dublin A94 X099, Ireland
| | - Jonathan Bones
- Characterisation and Comparability Laboratory, The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, County Dublin A94 X099, Ireland.,School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| |
Collapse
|
17
|
Similarity demonstrated between isolated charge variants of MB02, a biosimilar of bevacizumab, and Avastin® following extended physicochemical and functional characterization. Biologicals 2021; 73:41-56. [PMID: 34593306 DOI: 10.1016/j.biologicals.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The majority of recombinant mAb products contain heterogeneous charge variants, commonly the result of post-translational modifications occurring during cell culture and accumulated during production, formulation and storage. MB02 is a biosimilar mAb to bevacizumab. Similarity data of charge variants for biosimilars against its reference products must be generated to demonstrate consistency in product quality and to ensure efficacy and safety. The goal of this work was to isolate seven charge variants of MB02 and Avastin® by semi-preparative cation exchange chromatography followed by purity test and extended analytical characterization to prove similarity. Although poor purity obtained for minor variants complicated data interpretation, an in-depth insight into the charge variants pattern of MB02 compared to Avastin® was obtained, contributing to a better understanding of modifications associated to microheterogeneity. To our knowledge, this is the first comparative analytical study of individual charge variants of a bevacizumab biosimilar following a head-to head approach and the most comprehensive N-glycosylation assessment of IgG1 charge variants. Although modifications related to N- and C-terminal, N-glycans, size heterogeneity or deamidation were specifically enriched among low abundant charge variants, they did not affect binding affinity to VEGF or FcRn and in vitro potency compared with the main species or unfractionated material.
Collapse
|
18
|
Nitika N, Chhabra H, Rathore AS. Raman spectroscopy for in situ, real time monitoring of protein aggregation in lyophilized biotherapeutic products. Int J Biol Macromol 2021; 179:309-313. [PMID: 33689770 DOI: 10.1016/j.ijbiomac.2021.02.214] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/19/2021] [Accepted: 02/28/2021] [Indexed: 10/22/2022]
Abstract
Quality of biotherapeutic products is of paramount importance for ensuring patient safety. Analytical tools that can facilitate rapid quality assessment of the therapeutic product at the point of care are very much in demand. In this article, we apply chemometrics based analysis of Raman spectra towards quantitative prediction of protein aggregation in lyophilized biotherapeutic products. Two commercially available therapeutic proteins, erythropoietin (EPO) and human growth hormone (HGH), have been used to demonstrate the applicability of the proposed approach. Thermally induced protein aggregation was monitored by size exclusion chromatography as well as Raman spectroscopy with a 785 nm wavelength laser. Partial least square (PLS) regression was used to analyse the Raman spectra and create a model for quantitative determination of aggregate. Satisfactory performance was observed with both EPO and HGH with R2 of 0.91 and 0.94, cross-validation correlation coefficient of 0.85 and 0.89, and Root Mean Square Error computed from cross calibration (RMSEcv) of 5.25 and 1.92, respectively. The developed approach can enable rapid and accurate assessment of aggregation in lyophilized samples of biotherapeutic products. The study also demonstrates novel use of Raman spectroscopy for protein quantification through a vial.
Collapse
Affiliation(s)
- Nitika Nitika
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Hemlata Chhabra
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|