1
|
Sonck R, Vanthornhout J, Bonin E, Francart T. Auditory Steady-State Responses: Multiplexed Amplitude Modulation Frequencies to Reduce Recording Time. Ear Hear 2024:00003446-990000000-00322. [PMID: 39085997 DOI: 10.1097/aud.0000000000001552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
OBJECTIVES This study investigated the efficiency of a multiplexed amplitude-modulated (AM) stimulus in eliciting auditory steady-state responses. The multiplexed AM stimulus was created by simultaneously modulating speech-shaped noise with three frequencies chosen to elicit different neural generators: 3.1, 40.1, and 102.1 Hz. For comparison, a single AM stimulus was created for each of these frequencies, resulting in three single AM conditions and one multiplex AM condition. DESIGN Twenty-two bilaterally normal-hearing participants (18 females) listened for 8 minutes to each type of stimuli. The analysis compared the signal to noise ratios (SNRs) and amplitudes of the evoked responses to the single and multiplexed conditions. RESULTS The results revealed that the SNRs elicited by single AM conditions were, on average, 1.61 dB higher than those evoked by the multiplexed AM condition ( p < 0.05). The single conditions consistently produced a significantly higher SNR when examining various stimulus durations ranging from 1 to 8 minutes. Despite these SNR differences, the frequency spectrum was very similar across and within subjects. In addition, the sensor space patterns across the scalp demonstrated similar trends between the single and multiplexed stimuli for both SNR and amplitudes. Both the single and multiplexed conditions evoked significant auditory steady-state responses within subjects. On average, the multiplexed AM stimulus took 31 minutes for the lower bound of the 95% prediction interval to cross the significance threshold across all three frequencies. In contrast, the single AM stimuli took 45 minutes and 42 seconds. CONCLUSIONS These findings show that the multiplexed AM stimulus is a promising method to reduce the recording time when simultaneously obtaining information from various neural generators.
Collapse
Affiliation(s)
- Rien Sonck
- Department of Neurosciences, Research Group Experimental Oto-rhino-laryngology, KU Leuven, Leuven, Belgium
- Grappe Interdisciplinaire de Génoprotéomique Appliquée-Consciousness, Coma Science Group, University of Liège, Liège, Belgium
- Brain Center (C2), University Hospital Center of Liège, Liège, Belgium
- These authors shared first-authorship
| | - Jonas Vanthornhout
- Department of Neurosciences, Research Group Experimental Oto-rhino-laryngology, KU Leuven, Leuven, Belgium
- These authors shared first-authorship
| | - Estelle Bonin
- Grappe Interdisciplinaire de Génoprotéomique Appliquée-Consciousness, Coma Science Group, University of Liège, Liège, Belgium
- Brain Center (C2), University Hospital Center of Liège, Liège, Belgium
| | - Tom Francart
- Department of Neurosciences, Research Group Experimental Oto-rhino-laryngology, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Yokota Y, Tanaka K, Chang M, Naruse Y, Imamura Y, Fujii S. Gamma music: a new acoustic stimulus for gamma-frequency auditory steady-state response. Front Hum Neurosci 2024; 17:1287018. [PMID: 38273878 PMCID: PMC10808749 DOI: 10.3389/fnhum.2023.1287018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
A frequency range exceeding approximately 30 Hz, denoted as the gamma frequency range, is associated with various cognitive functions, consciousness, sensory integration, short-term memory, working memory, encoding and maintenance of episodic memory, and retrieval processes. In this study, we proposed a new form of gamma stimulation, called gamma music, combining 40 Hz auditory stimuli and music. This gamma music consists of drums, bass, and keyboard sounds, each containing a 40 Hz frequency oscillation. Since 40 Hz stimuli are known to induce an auditory steady-state response (ASSR), we used the 40 Hz power and phase locking index (PLI) as indices of neural activity during sound stimulation. We also recorded subjective ratings of each sound through a questionnaire using a visual analog scale. The gamma music, gamma drums, gamma bass, and gamma keyboard sounds showed significantly higher values in 40 Hz power and PLI compared to the control music without a 40 Hz oscillation. Particularly, the gamma keyboard sound showed a potential to induce strong ASSR, showing high values in these indices. In the subjective ratings, the gamma music, especially the gamma keyboard sound, received more relaxed, comfortable, preferred, pleasant, and natural impressions compared to the control music with conventional gamma stimulation. These results indicate that our proposed gamma music has potential as a new method for inducing ASSR. Particularly, the gamma keyboard sound proved to be an effective acoustic source for inducing a strong ASSR while preserving the comfortable and pleasant sensation of listening to music. Our developed gamma music, characterized by its pleasantness to the human ear, offers a significant advantage for the long-term use of gamma stimulation. The utilization of this music could potentially reduce the physical and psychological burden on participants compared to conventional 40 Hz stimuli. This music is not only expected to contribute to fundamental neuroscience research utilizing ASSR but also to facilitate the implementation of gamma music-based interventions aimed at enhancing human cognitive functions in everyday life.
Collapse
|
3
|
MacIntyre AD, Carlyon RP, Goehring T. Neural Decoding of the Speech Envelope: Effects of Intelligibility and Spectral Degradation. Trends Hear 2024; 28:23312165241266316. [PMID: 39183533 PMCID: PMC11345737 DOI: 10.1177/23312165241266316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/23/2024] [Accepted: 06/16/2024] [Indexed: 08/27/2024] Open
Abstract
During continuous speech perception, endogenous neural activity becomes time-locked to acoustic stimulus features, such as the speech amplitude envelope. This speech-brain coupling can be decoded using non-invasive brain imaging techniques, including electroencephalography (EEG). Neural decoding may provide clinical use as an objective measure of stimulus encoding by the brain-for example during cochlear implant listening, wherein the speech signal is severely spectrally degraded. Yet, interplay between acoustic and linguistic factors may lead to top-down modulation of perception, thereby complicating audiological applications. To address this ambiguity, we assess neural decoding of the speech envelope under spectral degradation with EEG in acoustically hearing listeners (n = 38; 18-35 years old) using vocoded speech. We dissociate sensory encoding from higher-order processing by employing intelligible (English) and non-intelligible (Dutch) stimuli, with auditory attention sustained using a repeated-phrase detection task. Subject-specific and group decoders were trained to reconstruct the speech envelope from held-out EEG data, with decoder significance determined via random permutation testing. Whereas speech envelope reconstruction did not vary by spectral resolution, intelligible speech was associated with better decoding accuracy in general. Results were similar across subject-specific and group analyses, with less consistent effects of spectral degradation in group decoding. Permutation tests revealed possible differences in decoder statistical significance by experimental condition. In general, while robust neural decoding was observed at the individual and group level, variability within participants would most likely prevent the clinical use of such a measure to differentiate levels of spectral degradation and intelligibility on an individual basis.
Collapse
Affiliation(s)
| | - Robert P. Carlyon
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Tobias Goehring
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Mockevičius A, Yokota Y, Tarailis P, Hasegawa H, Naruse Y, Griškova-Bulanova I. Extraction of Individual EEG Gamma Frequencies from the Responses to Click-Based Chirp-Modulated Sounds. SENSORS (BASEL, SWITZERLAND) 2023; 23:2826. [PMID: 36905030 PMCID: PMC10007152 DOI: 10.3390/s23052826] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 06/01/2023]
Abstract
Activity in the gamma range is related to many sensory and cognitive processes that are impaired in neuropsychiatric conditions. Therefore, individualized measures of gamma-band activity are considered to be potential markers that reflect the state of networks within the brain. Relatively little has been studied in respect of the individual gamma frequency (IGF) parameter. The methodology for determining the IGF is not well established. In the present work, we tested the extraction of IGFs from electroencephalogram (EEG) data in two datasets where subjects received auditory stimulation consisting of clicks with varying inter-click periods, covering a 30-60 Hz range: in 80 young subjects EEG was recorded with 64 gel-based electrodes; in 33 young subjects, EEG was recorded using three active dry electrodes. IGFs were extracted from either fifteen or three electrodes in frontocentral regions by estimating the individual-specific frequency that most consistently exhibited high phase locking during the stimulation. The method showed overall high reliability of extracted IGFs for all extraction approaches; however, averaging over channels resulted in somewhat higher reliability scores. This work demonstrates that the estimation of individual gamma frequency is possible using a limited number of both the gel and dry electrodes from responses to click-based chirp-modulated sounds.
Collapse
Affiliation(s)
- Aurimas Mockevičius
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Yusuke Yokota
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Saka University, Kobe 651-2492, Hyogo, Japan
| | - Povilas Tarailis
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Hatsunori Hasegawa
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Saka University, Kobe 651-2492, Hyogo, Japan
| | - Yasushi Naruse
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Saka University, Kobe 651-2492, Hyogo, Japan
| | - Inga Griškova-Bulanova
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
5
|
Peeters J, Boogers A, Van Bogaert T, Davidoff H, Gransier R, Wouters J, Nuttin B, Mc Laughlin M. Electrophysiologic Evidence That Directional Deep Brain Stimulation Activates Distinct Neural Circuits in Patients With Parkinson Disease. Neuromodulation 2023; 26:403-413. [PMID: 35088733 DOI: 10.1016/j.neurom.2021.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Deep brain stimulation (DBS) delivered via multicontact leads implanted in the basal ganglia is an established therapy to treat Parkinson disease (PD). However, the different neural circuits that can be modulated through stimulation on different DBS contacts are poorly understood. Evidence shows that electrically stimulating the subthalamic nucleus (STN) causes a therapeutic effect through antidromic activation of the hyperdirect pathway-a monosynaptic connection from the cortex to the STN. Recent studies suggest that stimulating the substantia nigra pars reticulata (SNr) may improve gait. The advent of directional DBS leads now provides a spatially precise means to probe these neural circuits and better understand how DBS affects distinct neural networks. MATERIALS AND METHODS We measured cortical evoked potentials (EPs) using electroencephalography (EEG) in response to low-frequency DBS using the different directional DBS contacts in eight patients with PD. RESULTS A short-latency EP at 3 milliseconds originating from the primary motor cortex appeared largest in amplitude when stimulating DBS contacts closest to the dorsolateral STN (p < 0.001). A long-latency EP at 10 milliseconds originating from the premotor cortex appeared strongest for DBS contacts closest to the SNr (p < 0.0001). CONCLUSIONS Our results show that at the individual patient level, electrical stimulation of different nuclei produces distinct EP signatures. Our approach could be used to identify the functional location of each DBS contact and thus help patient-specific DBS programming. CLINICAL TRIAL REGISTRATION The ClinicalTrials.gov registration number for the study is NCT04658641.
Collapse
Affiliation(s)
- Jana Peeters
- Research Group Experimental Oto-rhino-laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Alexandra Boogers
- Research Group Experimental Oto-rhino-laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium; Department of Neurology, UZ Leuven, Leuven, Belgium
| | - Tine Van Bogaert
- Research Group Experimental Oto-rhino-laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Hannah Davidoff
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Robin Gransier
- Research Group Experimental Oto-rhino-laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Jan Wouters
- Research Group Experimental Oto-rhino-laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Bart Nuttin
- Division of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium; Department of Neurosurgery, UZ Leuven, Leuven, Belgium
| | - Myles Mc Laughlin
- Research Group Experimental Oto-rhino-laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Peeters J, Boogers A, Van Bogaert T, Dembek TA, Gransier R, Wouters J, Vandenberghe W, De Vloo P, Nuttin B, Mc Laughlin M. Towards biomarker-based optimization of deep brain stimulation in Parkinson's disease patients. Front Neurosci 2023; 16:1091781. [PMID: 36711127 PMCID: PMC9875598 DOI: 10.3389/fnins.2022.1091781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Background Subthalamic deep brain stimulation (DBS) is an established therapy to treat Parkinson's disease (PD). To maximize therapeutic outcome, optimal DBS settings must be carefully selected for each patient. Unfortunately, this is not always achieved because of: (1) increased technological complexity of DBS devices, (2) time restraints, or lack of expertise, and (3) delayed therapeutic response of some symptoms. Biomarkers to accurately predict the most effective stimulation settings for each patient could streamline this process and improve DBS outcomes. Objective To investigate the use of evoked potentials (EPs) to predict clinical outcomes in PD patients with DBS. Methods In ten patients (12 hemispheres), a monopolar review was performed by systematically stimulating on each DBS contact and measuring the therapeutic window. Standard imaging data were collected. EEG-based EPs were then recorded in response to stimulation at 10 Hz for 50 s on each DBS-contact. Linear mixed models were used to assess how well both EPs and image-derived information predicted the clinical data. Results Evoked potential peaks at 3 ms (P3) and at 10 ms (P10) were observed in nine and eleven hemispheres, respectively. Clinical data were well predicted using either P3 or P10. A separate model showed that the image-derived information also predicted clinical data with similar accuracy. Combining both EPs and image-derived information in one model yielded the highest predictive value. Conclusion Evoked potentials can accurately predict clinical DBS responses. Combining EPs with imaging data further improves this prediction. Future refinement of this approach may streamline DBS programming, thereby improving therapeutic outcomes. Clinical trial registration ClinicalTrials.gov, identifier NCT04658641.
Collapse
Affiliation(s)
- Jana Peeters
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Alexandra Boogers
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Tine Van Bogaert
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Robin Gransier
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Jan Wouters
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium,Laboratory for Parkinson Research, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Philippe De Vloo
- Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium,Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Bart Nuttin
- Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium,Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Myles Mc Laughlin
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium,*Correspondence: Myles Mc Laughlin,
| |
Collapse
|
7
|
Mai G, Howell P. The possible role of early-stage phase-locked neural activities in speech-in-noise perception in human adults across age and hearing loss. Hear Res 2023; 427:108647. [PMID: 36436293 DOI: 10.1016/j.heares.2022.108647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Ageing affects auditory neural phase-locked activities which could increase the challenges experienced during speech-in-noise (SiN) perception by older adults. However, evidence for how ageing affects SiN perception through these phase-locked activities is still lacking. It is also unclear whether influences of ageing on phase-locked activities in response to different acoustic properties have similar or different mechanisms to affect SiN perception. The present study addressed these issues by measuring early-stage phase-locked encoding of speech under quiet and noisy backgrounds (speech-shaped noise (SSN) and multi-talker babbles) in adults across a wide age range (19-75 years old). Participants passively listened to a repeated vowel whilst the frequency-following response (FFR) to fundamental frequency that has primary subcortical sources and cortical phase-locked response to slowly-fluctuating acoustic envelopes were recorded. We studied how these activities are affected by age and age-related hearing loss and how they are related to SiN performances (word recognition in sentences in noise). First, we found that the effects of age and hearing loss differ for the FFR and slow-envelope phase-locking. FFR was significantly decreased with age and high-frequency (≥ 2 kHz) hearing loss but increased with low-frequency (< 2 kHz) hearing loss, whilst the slow-envelope phase-locking was significantly increased with age and hearing loss across frequencies. Second, potential relationships between the types of phase-locked activities and SiN perception performances were also different. We found that the FFR and slow-envelope phase-locking positively corresponded to SiN performance under multi-talker babbles and SSN, respectively. Finally, we investigated how age and hearing loss affected SiN perception through phase-locked activities via mediation analyses. We showed that both types of activities significantly mediated the relation between age/hearing loss and SiN perception but in distinct manners. Specifically, FFR decreased with age and high-frequency hearing loss which in turn contributed to poorer SiN performance but increased with low-frequency hearing loss which in turn contributed to better SiN performance under multi-talker babbles. Slow-envelope phase-locking increased with age and hearing loss which in turn contributed to better SiN performance under both SSN and multi-talker babbles. Taken together, the present study provided evidence for distinct neural mechanisms of early-stage auditory phase-locked encoding of different acoustic properties through which ageing affects SiN perception.
Collapse
Affiliation(s)
- Guangting Mai
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham NG1 5DU, UK; Academic Unit of Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; Department of Experimental Psychology, University College London, London WC1H 0AP, UK.
| | - Peter Howell
- Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| |
Collapse
|
8
|
Responses at Individual Gamma Frequencies Are Related to the Processing Speed but Not the Inhibitory Control. J Pers Med 2022; 13:jpm13010026. [PMID: 36675687 PMCID: PMC9861418 DOI: 10.3390/jpm13010026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The link between the state of networks underlying the generation of periodic responses at gamma ranges and cognitive outcomes is still poorly understood. In this study, we tested the idea that the individual differences in the ability to generate responses to auditory stimulation at gamma frequencies may underlie the individual differences in the inhibitory control. We focused on the processing speed and accuracy in the Bivalent Shape Task (a cognitive inhibition task assessing attentional interference) and explored the relationship with responses at 40 Hz and at individual gamma frequencies (IGFs, assessed utilizing auditory envelope-following responses in 30-60 Hz range). In a sample of 70 subjects, we show that individual measures (phase-locking index and event-related spectral perturbation) of the ability to generate gamma-range activity are not related to the individual differences in inhibitory control but rather reflect basic information processing speed in healthy young subjects. With the individualized approach (at IGFs), the observed associations were found to be somewhat stronger. These findings have important implications for the interpretation of gamma activity in neuropsychiatric disorders.
Collapse
|
9
|
David W, Gransier R, Wouters J. Evaluation of phase-locking to parameterized speech envelopes. Front Neurol 2022; 13:852030. [PMID: 35989900 PMCID: PMC9382131 DOI: 10.3389/fneur.2022.852030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Humans rely on the temporal processing ability of the auditory system to perceive speech during everyday communication. The temporal envelope of speech is essential for speech perception, particularly envelope modulations below 20 Hz. In the literature, the neural representation of this speech envelope is usually investigated by recording neural phase-locked responses to speech stimuli. However, these phase-locked responses are not only associated with envelope modulation processing, but also with processing of linguistic information at a higher-order level when speech is comprehended. It is thus difficult to disentangle the responses into components from the acoustic envelope itself and the linguistic structures in speech (such as words, phrases and sentences). Another way to investigate neural modulation processing is to use sinusoidal amplitude-modulated stimuli at different modulation frequencies to obtain the temporal modulation transfer function. However, these transfer functions are considerably variable across modulation frequencies and individual listeners. To tackle the issues of both speech and sinusoidal amplitude-modulated stimuli, the recently introduced Temporal Speech Envelope Tracking (TEMPEST) framework proposed the use of stimuli with a distribution of envelope modulations. The framework aims to assess the brain's capability to process temporal envelopes in different frequency bands using stimuli with speech-like envelope modulations. In this study, we provide a proof-of-concept of the framework using stimuli with modulation frequency bands around the syllable and phoneme rate in natural speech. We evaluated whether the evoked phase-locked neural activity correlates with the speech-weighted modulation transfer function measured using sinusoidal amplitude-modulated stimuli in normal-hearing listeners. Since many studies on modulation processing employ different metrics and comparing their results is difficult, we included different power- and phase-based metrics and investigate how these metrics relate to each other. Results reveal a strong correspondence across listeners between the neural activity evoked by the speech-like stimuli and the activity evoked by the sinusoidal amplitude-modulated stimuli. Furthermore, strong correspondence was also apparent between each metric, facilitating comparisons between studies using different metrics. These findings indicate the potential of the TEMPEST framework to efficiently assess the neural capability to process temporal envelope modulations within a frequency band that is important for speech perception.
Collapse
Affiliation(s)
- Wouter David
- ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
10
|
Gransier R, Wouters J. Neural auditory processing of parameterized speech envelopes. Hear Res 2021; 412:108374. [PMID: 34800800 DOI: 10.1016/j.heares.2021.108374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 10/19/2022]
Abstract
Speech perception depends highly on the neural processing of the speech envelope. Several auditory processing deficits are hypothesized to result in a reduction in fidelity of the neural representation of the speech envelope across the auditory pathway. Furthermore, this reduction in fidelity is associated with supra-threshold speech processing deficits. Investigating the mechanisms that affect the neural encoding of the speech envelope can be of great value to gain insight in the different mechanisms that account for this reduced neural representation, and to develop stimulation strategies for hearing prosthesis that aim to restore it. In this perspective, we discuss the importance of neural assessment of phase-locking to the speech envelope from an audiological view and introduce the Temporal Envelope Speech Tracking (TEMPEST) stimulus framework which enables the electrophysiological assessment of envelope processing across the auditory pathway in a systematic and standardized way. We postulate that this framework can be used to gain insight in the salience of speech-like temporal envelopes in the neural code and to evaluate the effectiveness of stimulation strategies that aim to restore temporal processing across the auditory pathway with auditory prostheses.
Collapse
Affiliation(s)
- Robin Gransier
- ExpORL, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium.
| | - Jan Wouters
- ExpORL, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
11
|
BechChristensen C, Lunner T, Harte J, Rank M, Kidmose P. Chirp-evoked auditory steady-state response: The effect of repetition rate. IEEE Trans Biomed Eng 2021; 69:689-699. [PMID: 34383641 DOI: 10.1109/tbme.2021.3103332] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The auditory steady-state response (ASSR) is commonly used in clinical pediatric audiology in order to provide an electrophysiological estimate of hearing threshold, and has the potential to be used in unsupervised mobile EEG applications. Enhancement of the ASSR amplitude through optimization of the stimulation and recording methods shortens the required testing time or reduce the offset between the electrophysiological and behavioral thresholds. Here, we investigate the spatial distribution of the ASSR to broadband chirp stimuli across a wide range of repetition rates on the scalp and in the ears. Moreover, the ASSR amplitude is compared across repetition rates for commonly used electrode configurations. METHODS ASSR to chirp stimuli with repetition rates from 6-198 Hz was recorded using scalp EEG and high-density ear-EEG. RESULTS The distributions of the ASSR amplitude and phase were found to be dependent on the chirp repetition rate across the scalp, but independent of repetition rate in the ears. The normal drop in ASSR SNR for high repetition rates seen for click and pure tone stimuli was not found for chirp stimuli. Instead, the ASSR SNRs for chirp stimuli at high repetition rates (95-198 Hz) were found to be comparable to that found at 40 Hz for scalp EEG and even higher than 40 Hz ASSR for ear-EEG. CONCLUSION Based on the results, use of chirp stimuli with high repetition rates (95-198 Hz) is advantageous for multiple stimulus ASSR recording in both clinical practice and mobile real-life applications.
Collapse
|
12
|
Individual Resonant Frequencies at Low-Gamma Range and Cognitive Processing Speed. J Pers Med 2021; 11:jpm11060453. [PMID: 34071027 PMCID: PMC8224604 DOI: 10.3390/jpm11060453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/03/2021] [Accepted: 05/21/2021] [Indexed: 02/04/2023] Open
Abstract
Brain electrophysiological activity within the low gamma frequencies (30–80 Hz) has been proposed to reflect information encoding and transfer processes. The 40-Hz auditory steady-state response (40-Hz ASSR) is frequently discussed in relation to changed cognitive processing in neuropsychiatric disorders. However, the relationship between ASSRs and cognitive functioning still remains unclear. Most of the studies assessed the single frequency ASSR, while the individual resonance frequency in the gamma range (30–60 Hz), also called individual gamma frequency (IGF), has received limited attention thus far. Nevertheless, IGF potentially might better reflect individual network characteristics than standardly utilized 40-Hz ASSRs. Here, we focused on the processing speed across different types of cognitive tasks and explored its relationship with responses at 40 Hz and at IGFs in an attempt to uncover how IGFs relate to certain aspects of cognitive functioning. We show that gamma activity is related to the performance speed on complex cognitive task tapping planning and problem solving, both when responses at 40 Hz and at IGFs were evaluated. With the individualized approach, the observed associations were found to be somewhat stronger, and the association seemed to primarily reflect individual differences in higher-order cognitive processing. These findings have important implications for the interpretation of gamma activity in neuropsychiatric disorders.
Collapse
|