1
|
Paengjun NK, Polshettiwar V, Ogawa M. Designed Nanoarchitectures of a BiOBr/BiOI Nanosheet Heterojunction Anchored on Dendritic Fibrous Nanosilica as Visible-Light Responsive Photocatalysts. Inorg Chem 2024; 63:11870-11883. [PMID: 38865140 DOI: 10.1021/acs.inorgchem.4c01756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Heterojunctions, particularly those involving BiOBr/BiOI, have attracted significant attention in the field of photocatalysis due to their remarkable properties. In this study, a unique architecture of BiOBr/BiOI was designed to facilitate the rapid transfer of electrons and holes, effectively mitigating the recombination of electron-hole pairs. Accordingly, the BiOBr/BiOI nanosheet heterojunction was anchored on dendritic fibrous nanosilica (DFNS) by the immobilization of Bi2O3 nanodots in DFNS and the subsequent reaction with HBr and then HI vapors at room temperature. The 4 nm-Bi2O3 nanodots acted as a sacrificial template to form BiOX nanosheets by reaction with HX vapors (X = Br, I). The BiOBr/BiOI nanosheet heterojunction with the lateral size remained in the range of 90 to 110 nm and a thickness of 15 nm formed on DFNS, where the BiOBr:BiOI ratio in the product was controlled by the exposure time to HX vapors. The reaction sequence (HBr → HI vapors) was a key for the formation of BiOBr/BiOI nanosheet heterojunction with controlled composition. When the reaction of Bi2O3 nanodots with HI vapor was performed in the reverse sequence (HI→ HBr), the substitution of I- with Br- occurred to form BiOBr sheets on DFNS. The BiOBr/BiOI nanosheet heterojunction anchored on DFNS was used as a visible-light-driven photocatalyst for the decomposition of benzene in water under solar light, and its activity was superior to that of single BiOX nanosheets on DFNS.
Collapse
Affiliation(s)
- Navarut Kan Paengjun
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Pa Yup Nai, Wang Chan, Rayong 21210, Thailand
| | - Vivek Polshettiwar
- Division of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Mumbai 400005, India
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Pa Yup Nai, Wang Chan, Rayong 21210, Thailand
| |
Collapse
|
2
|
Bachvarova-Nedelcheva A, Kostova Y, Yordanova L, Nenova E, Shestakova P, Ivanova I, Pavlova E. Sol-Gel Synthesis of Silica-Poly (Vinylpyrrolidone) Hybrids with Prooxidant Activity and Antibacterial Properties. Molecules 2024; 29:2675. [PMID: 38893548 PMCID: PMC11173412 DOI: 10.3390/molecules29112675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
The present work deals with the sol-gel synthesis of silica-poly (vinylpyrrolidone) hybrid materials. The nanohybrids (Si-PVP) have been prepared using an acidic catalyst at ambient temperature. Tetramethyl ortosilane (TMOS) was used as a silica precursor. Poly (vinylpyrrolidone) (PVP) was introduced into the reaction mixture as a solution in ethanol with a concentration of 20%. The XRD established that the as-prepared material is amorphous. The IR and 29Si MAS NMR spectra proved the formation of a polymerized silica network as well as the hydrogen bonding interactions between the silica matrix and OH hydrogens of the silanol groups. The TEM showed spherical particle formation along with increased agglomeration tendency. The efficacy of SiO2/PVP nanoparticles as a potential antimicrobial agent against a wide range of bacteria was evaluated as bacteriostatic, using agar diffusion and spot tests. Combined effects of hybrid nanomaterial and antibiotics could significantly reduce the bactericidal concentrations of both the antibiotic and the particles, and they could also eliminate the antibiotic resistance of the pathogen. The registered prooxidant activity of the newly synthesized material was confirmative and explicatory for the antibacterial properties of the tested substance and its synergetic combination with antibiotics. The effect of new hybrid material on Crustacea Daphnia magna was also estimated as harmless under concentration of 0.1 mg/mL.
Collapse
Affiliation(s)
- Albena Bachvarova-Nedelcheva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 11, 1113 Sofia, Bulgaria
| | - Yoanna Kostova
- Institute of Metal Science, Equipment and Technologies with Hydro- and Aerodynamics Centre “Acad. A. Balevski”, Bulgarian Academy of Sciences, Shipchenski Prohod Str., 67, 1574 Sofia, Bulgaria;
| | - Lilia Yordanova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (L.Y.); (E.N.); (I.I.)
| | - Elena Nenova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (L.Y.); (E.N.); (I.I.)
| | - Pavletta Shestakova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria;
| | - Iliana Ivanova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (L.Y.); (E.N.); (I.I.)
| | - Elitsa Pavlova
- Faculty of Physics, Sofia University “St. Kliment Ohridski”, 5 James Boucher Blvd., 1164 Sofia, Bulgaria;
| |
Collapse
|
3
|
Huang Y, Liang Q, Yin H, Zhang X, Gao R, Pan J, Liang K, Jiang L, Kong B. pH Modulation of Super-Assembled Heteromembranes for Sustainable Chiral Sensing. ACS NANO 2024; 18:12547-12559. [PMID: 38695563 DOI: 10.1021/acsnano.4c02720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
Enantioselective sensing and separation represent formidable challenges across a diverse range of scientific domains. The advent of hybrid chiral membranes offers a promising avenue to address these challenges, capitalizing on their unique characteristics, including their heterogeneous structure, porosity, and abundance of chiral surfaces. However, the prevailing fabrication methods typically involve the initial preparation of achiral porous membranes followed by subsequent modification with chiral molecules, limiting their synthesis flexibility and controllability. Moreover, existing chiral membranes struggle to achieve coupled-accelerated enantioseparation (CAE). Here, we report a replacement strategy to controllably produce mesoscale and chiral silica-carbon (MCSC) hybrid membranes that comprise chiral pores by interfacial superassembly on a macroporous alumina (AAO) membrane, in which both ion- and enantiomers can be effectively and selectively transported across the membrane. As a result, the heterostructured hybrid membrane (MCSC/AAO) exhibits enhanced selectivity for cations and enantiomers of amino acids, achieving CAE for amino acids with an isoelectric point (pI) exceeding 7. Interestingly, the MCSC/AAO system demonstrates enhanced pH-sensitive enantioseparation compared to chiral mesoporous silica/AAO (CMS/AAO) with significant improvements of 78.14, 65.37, and 14.29% in the separation efficiency, separation factor, and permeate flux, respectively. This work promises to advance the synthesis of two or more component-integrated chiral nanochannels with multifunctional properties and allows a better understanding of the origins of the homochiral hybrid membranes.
Collapse
Affiliation(s)
- Yanan Huang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, P. R. China
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Qirui Liang
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266400, P. R. China
| | - Haibo Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Xin Zhang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Ruihua Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Kang Liang
- School of Chemical Engineering, Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Lei Jiang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, P. R. China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, P. R. China
- Shandong Fudan Research Institute, Jinan 250014, P. R. China
| |
Collapse
|
4
|
Casey É, Breen R, Gómez JS, Kentgens APM, Pareras G, Rimola A, Holmes JD, Collins G. Ligand-Aided Glycolysis of PET Using Functionalized Silica-Supported Fe 2O 3 Nanoparticles. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:15544-15555. [PMID: 37920799 PMCID: PMC10618922 DOI: 10.1021/acssuschemeng.3c03585] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/04/2023] [Indexed: 11/04/2023]
Abstract
The development of efficient catalysts for the chemical recycling of poly(ethylene terephthalate) (PET) is essential to tackling the global issue of plastic waste. There has been intense interest in heterogeneous catalysts as a sustainable catalyst system for PET depolymerization, having the advantage of easy separation and reuse after the reaction. In this work, we explore heterogeneous catalyst design by comparing metal-ion (Fe3+) and metal-oxide nanoparticle (Fe2O3 NP) catalysts immobilized on mesoporous silica (SiO2) functionalized with different N-containing amine ligands. Quantitative solid-state nuclear magnetic resonance (NMR) spectroscopy confirms successful grafting and elucidates the bonding mode of the organic ligands on the SiO2 surface. The surface amine ligands act as organocatalysts, enhancing the catalytic activity of the active metal species. The Fe2O3 NP catalysts in the presence of organic ligands outperform bare Fe2O3 NPs, Fe3+-ion-immobilized catalysts and homogeneous FeCl3 salts, with equivalent Fe loading. X-ray photoelectron spectroscopy analysis indicates charge transfer between the amine ligands and Fe2O3 NPs and the electron-donating ability of the N groups and hydrogen bonding may also play a role in the higher performance of the amine-ligand-assisted Fe2O3 NP catalysts. Density functional theory (DFT) calculations also reveal that the reactivity of the ion-immobilized catalysts is strongly correlated to the ligand-metal binding energy and that the products in the glycolysis reaction catalyzed by the NP catalysts are stabilized, showing a significant exergonic character compared to single ion-immobilized Fe3+ ions.
Collapse
Affiliation(s)
- Éadaoin Casey
- School
of Chemistry, University College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Rachel Breen
- School
of Chemistry, University College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Jennifer S. Gómez
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, The Netherlands
| | - Arno P. M. Kentgens
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, The Netherlands
| | - Gerard Pareras
- Departament
de Química, Universitat Autònoma
de Barcelona, Bellaterra, Catalonia 08193, Spain
| | - Albert Rimola
- Departament
de Química, Universitat Autònoma
de Barcelona, Bellaterra, Catalonia 08193, Spain
| | - Justin. D. Holmes
- School
of Chemistry, University College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Gillian Collins
- School
of Chemistry, University College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| |
Collapse
|
5
|
Cabrera-Munguia DA, Gutiérrrez-Alejandre A, Romero-Galarza A, Morales-Martínez TK, Ríos-González LJ, Sifuentes-López J. Function of Brønsted and Lewis acid sites in xylose conversion into furfural. RSC Adv 2023; 13:30649-30664. [PMID: 37859779 PMCID: PMC10583826 DOI: 10.1039/d3ra05774g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023] Open
Abstract
In this work, the xylose conversion and the selectivity to furfural were assessed over mesoporous sulfonic silica SBA-15-(X)SO3H catalysts doped with metal ions (X = Al(iii), Ti(iv) or Zr(iv)). The type and amount of acid sites were analyzed by adsorption of pivalonitrile. The SBA-15-(X)SO3H materials show Lewis acid sites (LAS) and two types of Brønsted acid sites (BAS) with different strengths. Type I (BAS I) belongs to terminal silanol groups, type II (BAS II) is ascribed to hydroxyl groups bonded to sulfur or transition metal, and the LAS is related to M-O bonds. Optimal reaction conditions for the most active catalyst (SBA-15-(Zr)SO3H) were 120 minutes of reaction at 160 °C, 20 wt% of catalyst, and 2.5% of xylose/solvent. Additionally, a kinetic study was carried out to calculate the rate constants, the activation energy, and the pre-exponential factor for the xylose dehydration reaction. It was found that the selectivity to furfural in sulfonic silica SBA-15-(X)SO3H catalysts was directly related to the BAS II fraction. While LAS negatively impacts the selectivity to furfural leading to the undesired reaction between furfural and xylose obtaining humins as secondary products.
Collapse
Affiliation(s)
- Denis A Cabrera-Munguia
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila Ing. J. Cárdenas s/n Saltillo Coahuila 25280 Mexico +52 8441894706
| | | | - Adolfo Romero-Galarza
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila Ing. J. Cárdenas s/n Saltillo Coahuila 25280 Mexico +52 8441894706
| | - Thelma K Morales-Martínez
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila Ing. J. Cárdenas s/n Saltillo Coahuila 25280 Mexico +52 8441894706
| | - Leopoldo J Ríos-González
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila Ing. J. Cárdenas s/n Saltillo Coahuila 25280 Mexico +52 8441894706
| | - Jesús Sifuentes-López
- Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Coahuila Carretera Torreón-Matamoros km 7.5 CU Torreón Coahuila 27087 Mexico
| |
Collapse
|
6
|
Cheepborisutikul SJ, Ogawa M. Controlled Phase Transformation and Crystal Growth of Titanium Dioxide from Anatase/Silica Core/Shell Particles. Inorg Chem 2023. [PMID: 37463236 DOI: 10.1021/acs.inorgchem.3c01904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Anatase/silica core/shell particles were prepared by the hydrolysis and condensation of tetraethyl orthosilicate on anatase particles with the sizes of 9, 22, and 111 nm, respectively. The thickness of the silica layer was designed from ca. 3 to 14 nm by repeating the coating procedure on anatase with a particle size of 22 nm. By the heat treatment at 1000 °C, though the pristine anatase particles transformed to rutile, anatase remained for the silica-coated particles. Anatase particles (111 nm) transformed to rutile upon heating at 1100 °C, while the transformation was not observed for the smaller particles (9 and 22 nm). With the increase of the silica thickness to 14 nm, anatase did not transform to rutile even after heating at 1150 °C, while resulting in varied compositions of anatase and rutile after heating at 1200 °C. The crystal growth of anatase and rutile was also suppressed for the silica-coated particles compared with that seen for pristine anatase. Thus, the thermal transformation and crystal growth of titania were controlled by the coating with silica, and the effects were shown to affect the coating.
Collapse
Affiliation(s)
- Siraphat Jan Cheepborisutikul
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| |
Collapse
|
7
|
High zirconium loads in Zr-SBA-15 mesoporous materials prepared by direct-synthesis and pH-adjusting approaches. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Paengjun NK, Ogawa M. Formation of BiOX (X = Cl and Br) in a mesoporous silica by the infiltration of Bi salts and the subsequent reaction with HX vapor. Chem Commun (Camb) 2021; 57:8139-8142. [PMID: 34346434 DOI: 10.1039/d1cc03138d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of BiOX (X = Br and Cl) nanoparticles in a mesoporous silica (SBA-15) was found by the reaction of the infiltrated bismuth oxo species with HX vapor at room temperature. The cylindrical pores of SBA-15 led to the directional growth of BiOX nanorods and control of the particle diameter.
Collapse
Affiliation(s)
- Navarut Kan Paengjun
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand.
| | | |
Collapse
|