1
|
Sun X, Shi C, Dai J, Zhang MQ, Pei DS, Yang L. Targeting the mitochondrial protein YME1L to inhibit osteosarcoma cell growth in vitro and in vivo. Cell Death Dis 2024; 15:346. [PMID: 38769124 PMCID: PMC11106333 DOI: 10.1038/s41419-024-06722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
Exploring novel diagnostic and therapeutic biomarkers is extremely important for osteosarcoma. YME1 Like 1 ATPase (YME1L), locating in the mitochondrial inner membrane, is key in regulating mitochondrial plasticity and metabolic activity. Its expression and potential functions in osteosarcoma are studied in the present study. We show that YME1L mRNA and protein expression is significantly elevated in osteosarcoma tissues derived from different human patients. Moreover, its expression is upregulated in various primary and immortalized osteosarcoma cells. The Cancer Genome Atlas database results revealed that YME1L overexpression was correlated with poor overall survival and poor disease-specific survival in sarcoma patients. In primary and immortalized osteosarcoma cells, silencing of YME1L through lentiviral shRNA robustly inhibited cell viability, proliferation, and migration. Moreover, cell cycle arrest and apoptosis were detected in YME1L-silenced osteosarcoma cells. YME1L silencing impaired mitochondrial functions in osteosarcoma cells, causing mitochondrial depolarization, oxidative injury, lipid peroxidation and DNA damage as well as mitochondrial respiratory chain complex I activity inhibition and ATP depletion. Contrarily, forced YME1L overexpression exerted pro-cancerous activity and strengthened primary osteosarcoma cell proliferation and migration. YME1L is important for Akt-S6K activation in osteosarcoma cells. Phosphorylation of Akt and S6K was inhibited after YME1L silencing in primary osteosarcoma cells, but was strengthened with YME1L overexpression. Restoring Akt-mTOR activation by S473D constitutively active Akt1 mitigated YME1L shRNA-induced anti-osteosarcoma cell activity. Lastly, intratumoral injection of YME1L shRNA adeno-associated virus inhibited subcutaneous osteosarcoma xenograft growth in nude mice. YME1L depletion, mitochondrial dysfunction, oxidative injury, Akt-S6K inactivation, and apoptosis were detected in YME1L shRNA-treated osteosarcoma xenografts. Together, overexpressed YME1L promotes osteosarcoma cell growth, possibly by maintaining mitochondrial function and Akt-mTOR activation.
Collapse
Affiliation(s)
- Xu Sun
- Department of Hand and Foot Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Ce Shi
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Orthopedics, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Jin Dai
- Department of Orthopedics, Suzhou Wujiang District Children's Hospital, Suzhou, China
| | | | - Dong-Sheng Pei
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Lei Yang
- Department of Orthopedics, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China.
| |
Collapse
|
2
|
He Y, Li R, Yu Y, Huang C, Xu Z, Wang T, Chen M, Huang H, Qi Z. Human neural stem cells promote mitochondrial genesis to alleviate neuronal damage in MPTP-induced cynomolgus monkey models. Neurochem Int 2024; 175:105700. [PMID: 38417589 DOI: 10.1016/j.neuint.2024.105700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/01/2024]
Abstract
Currently, there is no effective treatment for Parkinson's disease (PD), and the regenerative treatment of neural stem cells (NSCs) is considered the most promising method. This study aimed to investigate the protective effect and mechanism of NSCs on neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced cynomolgus monkey (Macaca fascicularis) model of PD. We first found that injecting NSCs into the subarachnoid space relieved motor dysfunction in PD cynomolgus monkeys, as well as reduced dopaminergic neuron loss and neuronal damage in the substantia nigra (SN) and striatum. Besides, NSCs decreased 17-estradiol (E2) level, an estrogen, in the cerebrospinal fluid (CSF) of PD cynomolgus monkeys, which shows NSCs may provide neuro-protection by controlling estrogen levels in the CSF. Furthermore, NSCs elevated proliferator-activated receptor gamma coactivator-1 alpha (PGC-1a), mitofusin 2 (MFN2), and optic atrophy 1 (OPA1) expression, three genes mediating mitochondrial biogenesis, in the SN and striatum of PD monkeys. In addition, NSCs suppress reactive oxygen species (ROS) production caused by MPTP, as well as mitochondrial autophagy, therefore preserving dopaminergic neurons. In summary, our findings show that NSCs may preserve dopaminergic and neuronal cells in an MPTP-induced PD cynomolgus monkey model. These protective benefits might be attributed to NSCs' ability of modulating estrogen balance, increasing mitochondrial biogenesis, and limiting oxidative stress and mitochondrial autophagy. These findings add to our understanding of the mechanism of NSC treatment and shed light on further clinical treatment options.
Collapse
Affiliation(s)
- Ying He
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China; The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, 545007, China
| | - Ruicheng Li
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yuxi Yu
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Chusheng Huang
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530004, China
| | - Zhiran Xu
- Translational Medicine Research Center, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
| | - Tianbao Wang
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Ming Chen
- Jinjiang Municipal Hospital (Shanghai Sixth People's Hospital Fujian Campus), Quanzhou, Fujian, 362200, China
| | - Hongri Huang
- Guangxi Taimei Rensheng Biotechnology Co., Ltd., Nanning, Guangxi, 530011, China
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
3
|
Jiang X, Xu X, Wang B, Song K, Zhang J, Chen Y, Tian Y, Weng J, Liang Y, Ma W. Adverse effects of 2-Methoxyestradiol on mouse oocytes during reproductive aging. Chem Biol Interact 2023; 369:110277. [PMID: 36414027 DOI: 10.1016/j.cbi.2022.110277] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
2-Methoxyestradiol (2-ME2) is a metabolite of 17β-estradiol and is currently in clinical trials as an antitumor agent. Here we found 2-ME2 level remains stable in the local environment of ovaries but declines in serum in aging mice, and exogenous 2-ME2 impacts the meiotic maturation of mouse oocytes in dose-dependent manner. In vitro 2-ME2 application arrested oocytes at metaphase I (MI), with abnormal spindle structure and chromosome alignment. 2-ME2 exposure induced excessive production of reactive oxygen species (ROS) and malondialdehyde, as well as accelerated apoptosis progression. 2-ME2 unbalanced mitochondrial dynamics by increasing DRP1 and MFN1 while decreasing Opa1. Similar phenotypes were also observed in oocytes from mice injected intraperitoneally with 2-ME2. Taken together, this study indicates 2-ME2 exposure impairs oocyte meiotic maturation through inducing mitochondrial imbalance, oxidative stress and apoptosis. The gradual decline in oocyte quality and quantity may be associated with the stable 2-ME2 in ovaries during female reproductive aging.
Collapse
Affiliation(s)
- Xiuying Jiang
- Devision of Sport Anatomy, School of Sport Science, Beijing Sport University, Beijing, 100084, China
| | - Xiangning Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Bicheng Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ke Song
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jiaqi Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ye Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ying Tian
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jing Weng
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yuanjing Liang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wei Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
4
|
ADCK1 is a potential therapeutic target of osteosarcoma. Cell Death Dis 2022; 13:954. [PMID: 36371387 PMCID: PMC9653483 DOI: 10.1038/s41419-022-05401-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/14/2022] [Accepted: 11/02/2022] [Indexed: 11/14/2022]
Abstract
We here showed that ADCK1 (AarF domain-containing kinase 1), a mitochondrial protein, is upregulated in human osteosarcoma (OS) tissues and OS cells. In primary and established OS cells, ADCK1 shRNA or CRISPR/Cas9-induced ADCK1 knockout (KO) remarkably inhibited cell viability, proliferation and migration, and provoked apoptosis activation. Conversely, ectopic ADCK1 overexpression exerted pro-cancerous activity by promoting OS cell proliferation and migration. ADCK1 depletion disrupted mitochondrial functions in OS cells and induced mitochondrial membrane potential reduction, ATP depletion, reactive oxygen species production. Significantly, ADCK1 silencing augmented doxorubicin-induced apoptosis in primary OS cells. mTOR activation is important for ADCK1 expression in OS cells. The mTOR inhibitors, rapamycin and AZD2014, as well as mTOR shRNA, potently decreased ADCK1 expression in primary OS cells. In nude mice, the growth of subcutaneous pOS-1 xenografts was largely inhibited when bearing ADCK1 shRNA or ADCK1 KO construct. Moreover, ADCK1 KO largely inhibited pOS-1 xenograft in situ growth in proximal tibia of nude mice. ADCK1 depletion, apoptosis activation and ATP reduction were detected in pOS-1 xenografts bearing ADCK1 shRNA or ADCK1 KO construct. Together, the mitochondrial protein ADCK1 is required for OS cell growth and is a novel therapeutic target of OS.
Collapse
|
5
|
Zhou F, Dou X, Li C. CKB affects human osteosarcoma progression by regulating the p53 pathway. Am J Cancer Res 2022; 12:4652-4665. [PMID: 36381321 PMCID: PMC9641398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023] Open
Abstract
This study aimed to explore the role of the creatine kinase B (CKB) gene in the development of human osteosarcoma (OS). Western blotting and qRT-PCR were performed to detect CKB expression in tissues and cells. CCK-8, colony formation, flow cytometry, Transwell, and cell scratch assays were performed to detect OS cell viability, proliferation, apoptosis, invasion, and migration. Gene set enrichment analysis (GSEA) was used to conduct signal pathway enrichment. CKB expression was higher in OS tissues and cells than that in normal tissues and cells. Silencing CKB expression reduced cell proliferation, migration, and invasion, and improved cell apoptosis in HOS cells, while overexpressing CKB increased cell proliferation, migration, and invasion, and decreased apoptosis in U2-OS cells. GSEA showed that CKB affected the p53 signaling pathway. Overexpression of CKB inhibited the protein expression of p53, p21, and Bax and promoted the expression of Bcl-2 and MDM2 in U2-OS cells. Conversely, silencing CKB promoted the protein expression of p53, p21, and Bax, and inhibited the expression of Bcl-2 and MDM2 in HOS cells. Silencing p53 could reverse the effect of the silencing CKB in HOS cells, and overexpressing p53 could reverse the effect of overexpressing CKB in U2-OS cells. Taken together, CKB affects the development of OS by regulating the activity of the p53 signaling pathway.
Collapse
Affiliation(s)
- Fengxin Zhou
- Department of Orthopedics, Tianjin Integrative Medicine Hospital (Tianjin Nankai Hospital)Tianjin 300100, China
| | - Xinli Dou
- Department of Oncology, Dagang HospitalBinhai New Area, Tianjin 300270, China
| | - Chenguang Li
- Department of Orthopedics, Tianjin Integrative Medicine Hospital (Tianjin Nankai Hospital)Tianjin 300100, China
| |
Collapse
|
6
|
Bastian PE, Daca A, Płoska A, Kuban-Jankowska A, Kalinowski L, Gorska-Ponikowska M. 2-Methoxyestradiol Damages DNA in Glioblastoma Cells by Regulating nNOS and Heat Shock Proteins. Antioxidants (Basel) 2022; 11:2013. [PMID: 36290736 PMCID: PMC9598669 DOI: 10.3390/antiox11102013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 08/18/2023] Open
Abstract
Gliomas are the most prevalent primary tumors of the central nervous system (CNS), accounting for over fifty percent of all primary intracranial neoplasms. Glioblastoma (GBM) is the most prevalent form of malignant glioma and is often incurable. The main distinguishing trait of GBM is the presence of hypoxic regions accompanied by enhanced angiogenesis. 2-Methoxyestradiol (2-ME) is a well-established antiangiogenic and antiproliferative drug. In current clinical studies, 2-ME, known as Panzem, was examined for breast, ovarian, prostate, and multiple myeloma. The SW1088 grade III glioma cell line was treated with pharmacological and physiological doses of 2-ME. The induction of apoptosis and necrosis, oxidative stress, cell cycle arrest, and mitochondrial membrane potential were established by flow cytometry. Confocal microscopy was used to detect DNA damage. The Western blot technique determined the level of nitric oxide synthase and heat shock proteins. Here, for the first time, 2-ME is shown to induce nitro-oxidative stress with the concomitant modulation of heat shock proteins (HSPs) in the SW1088 grade III glioma cell line. Crucial therapeutic strategies for GMB should address both cell proliferation and angiogenesis, and due to the above, 2-ME seems to be a perfect candidate for GBM therapy.
Collapse
Affiliation(s)
| | - Agnieszka Daca
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland
| | | | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland
| | - Magdalena Gorska-Ponikowska
- Department of Medical Chemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, D-70569 Stuttgart, Germany
- Euro-Mediterranean Institute of Science and Technology, 90139 Palermo, Italy
| |
Collapse
|
7
|
Musial C, Knap N, Zaucha R, Bastian P, Barone G, Lo Bosco G, Lo-Celso F, Konieczna L, Belka M, Bączek T, Gammazza AM, Kuban-Jankowska A, Cappello F, Nussberger S, Gorska-Ponikowska M. Induction of 2-hydroxycatecholestrogens O-methylation: A missing puzzle piece in diagnostics and treatment of lung cancer. Redox Biol 2022; 55:102395. [PMID: 35841627 PMCID: PMC9289866 DOI: 10.1016/j.redox.2022.102395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 07/02/2022] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is one of the most common cancers worldwide, causing nearly one million deaths each year. Herein, we present the effect of 2-methoxyestradiol (2-ME), the endogenous metabolite of 17β-estradiol (E2), on non-small cell lung cancer (NSCLC) cells. We observed that 2-ME reduced the viability of lung adenocarcinoma in two-dimensional (2D) and three-dimensional (3D) spheroidal A549 cell culture models. Molecular modeling was carried out aiming to visualize amino acid residues within binding pockets of the acyl-protein thioesterases, namely 1 (APT1) and 2 (APT2), and thus to identify which ones were more likely involved in the interaction with 2-ME. Our findings suggest that 2-ME acts as an APT1 inhibitor enhancing protein palmitoylation and oxidative stress phenomena in the lung cancer cell. In order to support our data, metabolomics of blood serum from NSCLC patients was also performed. Moreover, computational analysis suggests that 2-ME as compared to other estrogen metabolism intermediates is relatively safe in terms of its possible non-receptor bioactivity within healthy human cells due to a very low electrophilic potential and hence no substantial risk of spontaneous covalent modification of biologically protective nucleophiles. We propose that 2-ME can be used as a selective tumor biomarker in the course of certain types of lung cancers and possibly as a therapeutic adjuvant or neoadjuvant.
Collapse
Affiliation(s)
- Claudia Musial
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland
| | - Narcyz Knap
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland
| | - Renata Zaucha
- Department of Clinical Oncology and Radiotherapy, Medical University of Gdansk, 80-214, Gdansk, Poland
| | - Paulina Bastian
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128, Palermo, Italy
| | - Giosuè Lo Bosco
- Department of Mathematics and Computer Science, University of Palermo, 90133, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology, 90139, Palermo, Italy
| | - Fabrizio Lo-Celso
- Department of Physics and Chemistry 'Emilio Segrè', University of Palermo, 90128, Palermo, Italy
| | - Lucyna Konieczna
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, 80-416, Gdansk, Poland
| | - Mariusz Belka
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, 80-416, Gdansk, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, 80-416, Gdansk, Poland
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127, Palermo, Italy
| | - Alicja Kuban-Jankowska
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland
| | - Francesco Cappello
- Euro-Mediterranean Institute of Science and Technology, 90139, Palermo, Italy; Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127, Palermo, Italy
| | - Stephan Nussberger
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569, Stuttgart, Germany
| | - Magdalena Gorska-Ponikowska
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology, 90139, Palermo, Italy; Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569, Stuttgart, Germany.
| |
Collapse
|
8
|
Azhar AS, Abdel-Naim AB, Ashour OM. 2-Methoxyestradiol inhibits carotid artery intimal hyperplasia induced by balloon injury via inhibiting JAK/STAT axis in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59524-59533. [PMID: 35384535 DOI: 10.1007/s11356-022-19936-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Intimal hyperplasia (IH) is a common complication of vascular interventional procedures that leads to narrowing of the vessel lumen. 2-Methoxyestradiol (2ME), an estrogen metabolite, has numerous pharmacological actions, including vasoprotective and antiproliferative activities. The present study aimed to evaluate the potential of 2ME, prepared as a self-nanoemulsifying drug delivery system (SNEDDS), to inhibit IH induced by balloon injury (BI) in the rat carotid artery. The prepared 2ME SNEDDS had a particle size of 119 ± 2.3 nm and a zeta potential of -7.1 ± 1.4 mV. Animals were divided into 5 groups, namely control, sham, BI, BI + 2ME (100 μg/kg), and BI + 2ME (250 μg/kg). The obtained data indicated that 2ME significantly inhibited IH as indicated by the histological and morphometric assessment of the intima, media and lumen areas. This was associated with enhanced expression of Bax and inhibited expression of Bcl2 mRNA. Furthermore, 2ME exhibited significant antioxidant properties as evidenced by prevention of malondialdehyde accumulation as well as superoxide dismutase and catalase enzymatic exhaustion. In addition, 2ME showed significant anti-inflammatory actions as it significantly inhibited vascular content of interleukin-6, tumor necrosis factor-alpha, and nuclear factor-κB. The observed vasoprotective activities of 2ME were accompanied by inhibition of Janus kinase/signal transducers and activators of transcription (JAK/STAT) protein expression. In conclusion, this study revealed that 2ME ameliorates balloon injury-induced IH in rats via suppressing JAK/STAT axis. This may help to develop new strategies to combat IH.
Collapse
Affiliation(s)
- Ahmad S Azhar
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pediatric Cardiac Center of Excellence, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama M Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
9
|
Bastian P, Dulski J, Roszmann A, Jacewicz D, Kuban-Jankowska A, Slawek J, Wozniak M, Gorska-Ponikowska M. Regulation of Mitochondrial Dynamics in Parkinson's Disease-Is 2-Methoxyestradiol a Missing Piece? Antioxidants (Basel) 2021; 10:248. [PMID: 33562035 PMCID: PMC7915370 DOI: 10.3390/antiox10020248] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondria, as "power house of the cell", are crucial players in cell pathophysiology. Beyond adenosine triphosphate (ATP) production, they take part in a generation of reactive oxygen species (ROS), regulation of cell signaling and cell death. Dysregulation of mitochondrial dynamics may lead to cancers and neurodegeneration; however, the fusion/fission cycle allows mitochondria to adapt to metabolic needs of the cell. There are multiple data suggesting that disturbed mitochondrial homeostasis can lead to Parkinson's disease (PD) development. 2-methoxyestradiol (2-ME), metabolite of 17β-estradiol (E2) and potential anticancer agent, was demonstrated to inhibit cell growth of hippocampal HT22 cells by means of nitric oxide synthase (NOS) production and oxidative stress at both pharmacologically and also physiologically relevant concentrations. Moreover, 2-ME was suggested to inhibit mitochondrial biogenesis and to be a dynamic regulator. This review is a comprehensive discussion, from both scientific and clinical point of view, about the influence of 2-ME on mitochondria and its plausible role as a modulator of neuron survival.
Collapse
Affiliation(s)
- Paulina Bastian
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (P.B.); (A.K.-J.); (M.W.)
| | - Jaroslaw Dulski
- Department of Neurological-Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.D.); (A.R.); (J.S.)
- Neurology & Stroke Dpt. St. Adalbert Hospital, “Copernicus” Ltd., 80-462 Gdansk, Poland
| | - Anna Roszmann
- Department of Neurological-Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.D.); (A.R.); (J.S.)
- Neurology & Stroke Dpt. St. Adalbert Hospital, “Copernicus” Ltd., 80-462 Gdansk, Poland
| | - Dagmara Jacewicz
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland;
| | - Alicja Kuban-Jankowska
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (P.B.); (A.K.-J.); (M.W.)
| | - Jaroslaw Slawek
- Department of Neurological-Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.D.); (A.R.); (J.S.)
- Neurology & Stroke Dpt. St. Adalbert Hospital, “Copernicus” Ltd., 80-462 Gdansk, Poland
| | - Michal Wozniak
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (P.B.); (A.K.-J.); (M.W.)
| | - Magdalena Gorska-Ponikowska
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (P.B.); (A.K.-J.); (M.W.)
- Euro-Mediterranean Institute of Science and Technology, 90139 Palermo, Italy
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70174 Stuttgart, Germany
| |
Collapse
|