1
|
Ding B, Jiang L, Zhang N, Zhou L, Luo H, Wang H, Chen X, Gao Y, Zhao Z, Wang C, Wang Z, Guo Z, Wang Y. Santalum album L. alleviates cardiac function injury in heart failure by synergistically inhibiting inflammation, oxidative stress and apoptosis through multiple components. Chin Med 2024; 19:98. [PMID: 39010069 PMCID: PMC11251102 DOI: 10.1186/s13020-024-00968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/30/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Heart failure (HF) is a complex cardiovascular syndrome with high mortality. Santalum album L. (SAL) is a traditional Chinese medicine broadly applied for various diseases treatment including HF. However, the potential active compounds and molecular mechanisms of SAL in HF treatment are not well understood. METHODS The active compounds and possible mechanisms of action of SAL were analyzed and validated by a systems pharmacology framework and an ISO-induced mouse HF model. RESULTS We initially confirmed that SAL alleviates heart damage in ISO-induced HF model. A total of 17 potentially active components in SAL were identified, with Luteolin (Lut) and Syringaldehyde (SYD) in SAL been identified as the most effective combination through probabilistic ensemble aggregation (PEA) analysis. These compounds, individually and in their combination (COMB), showed significant therapeutic effects on HF by targeting multiple pathways involved in anti-oxidation, anti-inflammation, and anti-apoptosis. The active ingredients in SAL effectively suppressed inflammatory mediators and pro-apoptotic proteins while enhancing the expression of anti-apoptotic factors and antioxidant markers. Furthermore, the synergistic effects of SAL on YAP and PI3K-AKT signaling pathways were further elucidated. CONCLUSIONS Mechanistically, the anti-HF effect of SAL is responsible for the synergistic effect of anti-inflammation, antioxidation and anti-apoptosis, delineating a multi-targeted therapeutic strategy for HF.
Collapse
Affiliation(s)
- Bojiao Ding
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, 710069, Shaanxi, China
- Jiuwei Institute of Life Sciences, Yangling, 712100, Shaanxi, China
| | - Li Jiang
- Key Laboratory of Phytomedicinal Resources Utilization, Ministry of Education, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Na Zhang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, 710069, Shaanxi, China
- Jiuwei Institute of Life Sciences, Yangling, 712100, Shaanxi, China
| | - Li Zhou
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, 710069, Shaanxi, China
- Jiuwei Institute of Life Sciences, Yangling, 712100, Shaanxi, China
| | - Huiying Luo
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, 710069, Shaanxi, China
- Jiuwei Institute of Life Sciences, Yangling, 712100, Shaanxi, China
| | - Haiqing Wang
- Jiuwei Institute of Life Sciences, Yangling, 712100, Shaanxi, China
- Shaanxi Qinling Qiyao Collaborative Innovation Center Co. Ltd., Xianyang, 712100, Shaanxi, China
| | - Xuetong Chen
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, 710069, Shaanxi, China
- Jiuwei Institute of Life Sciences, Yangling, 712100, Shaanxi, China
- Shaanxi Qinling Qiyao Collaborative Innovation Center Co. Ltd., Xianyang, 712100, Shaanxi, China
| | - Yuxin Gao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, 710069, Shaanxi, China
- Jiuwei Institute of Life Sciences, Yangling, 712100, Shaanxi, China
| | - Zezhou Zhao
- Jiuwei Institute of Life Sciences, Yangling, 712100, Shaanxi, China
- Key Laboratory of Phytomedicinal Resources Utilization, Ministry of Education, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Chao Wang
- National Key Laboratory On Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, 222002, Jiangsu, China
| | - Zhenzhong Wang
- National Key Laboratory On Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, 222002, Jiangsu, China
| | - Zihu Guo
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, 710069, Shaanxi, China.
- Jiuwei Institute of Life Sciences, Yangling, 712100, Shaanxi, China.
- Shaanxi Qinling Qiyao Collaborative Innovation Center Co. Ltd., Xianyang, 712100, Shaanxi, China.
| | - Yonghua Wang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, 710069, Shaanxi, China.
- Jiuwei Institute of Life Sciences, Yangling, 712100, Shaanxi, China.
- Shaanxi Qinling Qiyao Collaborative Innovation Center Co. Ltd., Xianyang, 712100, Shaanxi, China.
- College of Pharmacy, Heze University, Heze, 274015, Shandong, China.
| |
Collapse
|
2
|
Li C, Liu Z, Liu D, Jiang H, Bi C, Shi W. Down-regulation of JCAD Expression Attenuates Cardiomyocyte Injury by Regulating the Wnt/β-Catenin Pathway. Folia Biol (Praha) 2024; 70:229-238. [PMID: 39692577 DOI: 10.14712/fb2024070040229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Coronary heart disease (CHD) is one of the most commonly seen cardiovascular conditions across the globe. Junctional cadherin 5 associated (JCAD) protein is found in the intercellular junctions of endothelial cells and linked to cardiovascular diseases. Nonetheless, the influence of JCAD on cardiomyocyte injury caused by CHD is unclear. A model of H2O2-induced H9c2 cell injury was constructed, and JCAD mRNA and protein levels were assessed by qRT-PCR and Western blot. The impacts of JCAD on the proliferation or apoptosis of H9c2 cells were explored by CCK-8 assay, Western blot and TUNEL staining. The effect of JCAD on the inflammatory response and vascular endothelial function of H9c2 cells was detected using ELISA kits. The levels of Wnt/β-catenin pathway-related proteins were assessed by Western blot. H2O2 treatment led to a rise in the levels of JCAD in H9c2 cells. Over-expression of JCAD promoted H2O2-induced cellular injury, leading to notably elevated contents of inflammatory factors, along with vascular endothelial dysfunction. In contrast to over-expression of JCAD, silencing of JCAD attenuated H2O2-induced cellular injury and inhibited apoptosis, inflammatory response and vascular endothelial dysfunction. Notably, JCAD could regulate the Wnt/β-catenin pathway, while DKK-1, Wnt/β-catenin pathway antagonist, counteracted the enhancing impact of JCAD over-expression on H2O2-induced H9c2 cell injury, further confirming that JCAD acts by regulating the Wnt/β-catenin pathway. In summary, over-expression of JCAD promoted H2O2-induced H9c2 cell injury by activating the Wnt/β-catenin pathway, while silencing of JCAD attenuated the H2O2-induced cell injury.
Collapse
Affiliation(s)
- Can Li
- Dafeng People's Hospital of Yancheng City, Jiangsu Province, China
| | - Zhengdong Liu
- Dafeng People's Hospital of Yancheng City, Jiangsu Province, China
| | - Dong Liu
- Dafeng People's Hospital of Yancheng City, Jiangsu Province, China
| | - Hui Jiang
- Dafeng People's Hospital of Yancheng City, Jiangsu Province, China
| | - Chenglong Bi
- People's Hospital of Zibo City, Shandong Province, China
| | - Weiwei Shi
- Dafeng People's Hospital of Yancheng City, Jiangsu Province, China.
| |
Collapse
|
3
|
Song Z, Yang Z, Tian L, Liu Y, Guo Z, Zhang Q, Zhang Y, Wen T, Xu H, Li Z, Wang Y. Targeting mitochondrial circadian rhythms: The potential intervention strategies of Traditional Chinese medicine for myocardial ischaemia‒reperfusion injury. Biomed Pharmacother 2023; 166:115432. [PMID: 37673019 DOI: 10.1016/j.biopha.2023.115432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023] Open
Abstract
Coronary artery disease has one of the highest mortality rates in the country, and methods such as thrombolysis and percutaneous coronary intervention (PCI) can effectively improve symptoms and reduce mortality, but most patients still experience symptoms such as chest pain after PCI, which seriously affects their quality of life and increases the incidence of adverse cardiovascular events (myocardial ischaemiareperfusion injury, MIRI). MIRI has been shown to be closely associated with circadian rhythm disorders and mitochondrial dysfunction. Mitochondria are a key component in the maintenance of normal cardiac function, and new research shows that mitochondria have circadian properties. Traditional Chinese medicine (TCM), as a traditional therapeutic approach characterised by a holistic concept and evidence-based treatment, has significant advantages in the treatment of MIRI, and there is an interaction between the yin-yang theory of TCM and the circadian rhythm of Western medicine at various levels. This paper reviews the clinical evidence for the treatment of MIRI in TCM, basic experimental studies on the alleviation of MIRI by TCM through the regulation of mitochondria, the important role of circadian rhythms in the pathophysiology of MIRI, and the potential mechanisms by which TCM regulates mitochondrial circadian rhythms to alleviate MIRI through the regulation of the biological clock transcription factor. It is hoped that this review will provide new insights into the clinical management, basic research and development of drugs to treat MIRI.
Collapse
Affiliation(s)
- Zhihui Song
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Tian
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yangxi Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zehui Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qiuju Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuhang Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tao Wen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haowei Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhenzhen Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
4
|
Ye H, Wang G, Wang X, Wang L, Ni W, Chen L, Zhu Y, Zhao L, Xiong Z, Wang Y, Dai C, Liu B. San-wei-tan-xiang capsule attenuates atherosclerosis by increasing lysosomal activity in adipose tissue macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116444. [PMID: 37061068 DOI: 10.1016/j.jep.2023.116444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dyslipidemia is the leading risk factor of atherosclerosis (AS). Adipose tissue macrophages (ATMs) can regulate postprandial cholesterol levels via uptake and hydrolyzation of lipids and regulation of macrophage cholesterol efflux (MCE). San-wei-tan-xiang (SWTX) capsule, a Traditional Chinese medicine, exerts clinical benefits in patients with atherosclerotic cardiovascular diseases. AIM OF THE STUDY This work is aimed to evaluate the chemical ingredients and mechanisms of SWTX in anti-AS. MATERIALS AND METHODS The chemical ingredients of SWTX identified by liquid chromatography coupled with tandem mass spectrometry were used for network pharmacological analysis. The atheroprotective function of SWTX was evaluated in ApoE-/- mice fed a cholesterol-enriched diet. RESULTS The chemical ingredients identified in SWTX were predicated to be important for lipid metabolism and AS. Animals studies suggested that SWTX effectively attenuated the atherosclerotic plaque growth, elevated postprandial HDL cholesterol levels, elevated the proportion of Tim4 and CD36-expressed ATMs, and upregulated the uptake of lipid and lysosomal activity in ATMs. SWTX-induced elevation of postprandial HDL cholesterol levels was dependent on increased lysosomal activity, since chloroquine, an inhibitor of lysosomal function, blocked the effect of SWTX. Lastly, some predicated bioactive compounds in SWTX can elevate lysosomal activity in vitro. CONCLUSION SWTX could attenuate atherosclerotic plaque formation by elevating lysosomal activity and enhancing MCE in ATMs.
Collapse
Affiliation(s)
- Heng Ye
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Gang Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Xuchao Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China; School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Lin Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Wei Ni
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Linjian Chen
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Yifan Zhu
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China.
| | - Cuilian Dai
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China.
| | - Binbin Liu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China.
| |
Collapse
|
5
|
Syed Abd Halim SA, Abd Rashid N, Woon CK, Abdul Jalil NA. Natural Products Targeting PI3K/AKT in Myocardial Ischemic Reperfusion Injury: A Scoping Review. Pharmaceuticals (Basel) 2023; 16:ph16050739. [PMID: 37242521 DOI: 10.3390/ph16050739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
This scoping review aimed to summarize the effects of natural products targeting phosphoinositide-3-kinases/serine/threonine kinase (PI3K/AKT) in myocardial ischemia-reperfusion injury (MIRI). The review details various types of natural compounds such as gypenoside (GP), gypenoside XVII (GP-17), geniposide, berberine, dihydroquercetin (DHQ), and tilianin which identified to reduce MIRI in vitro and in vivo by regulating the PI3K/AKT signaling pathway. In this study, 14 research publications that met the inclusion criteria and exclusion criteria were shortlisted. Following the intervention, we discovered that natural products effectively improved cardiac functions through regulation of antioxidant status, down-regulation of Bax, and up-regulation of Bcl-2 and caspases cleavage. Furthermore, although comparing outcomes can be challenging due to the heterogeneity in the study model, the results we assembled here were consistent, giving us confidence in the intervention's efficacy. We also discussed if MIRI is associated with multiple pathological condition such as oxidative stress, ERS, mitochondrial injury, inflammation, and apoptosis. This brief review provides evidence to support the huge potential of natural products used in the treatment of MIRI due to their various biological activities and drug-like properties.
Collapse
Affiliation(s)
| | - Norhashima Abd Rashid
- Department of Biomedical Science, Faculty of Applied Science, Lincoln University College, Petaling Jaya 47301, Selangor, Malaysia
| | - Choy Ker Woon
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
| | - Nahdia Afiifah Abdul Jalil
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Yan T, Zhu X, Zhang X, Jia X, Liu J, Wang X, Xiao Y, Xiao Z, Liu T, Dong Y. The application of proteomics and metabolomics to reveal the molecular mechanism of Nutmeg-5 in ameliorating cardiac fibrosis following myocardial infarction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154382. [PMID: 35963196 DOI: 10.1016/j.phymed.2022.154382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Nutmeg-5, an ancient and classic formula in traditional Mongolian medicine comprising five kinds of traditional Chinese medicine, is widely used in the treatment of myocardial infarction (MI, called heart "Heyi" disease in Mongolian medicine). Cardiac fibrosis plays a critical role in the development and progression of heart failure after MI. However, the material basis and pharmacological mechanisms of the effect of Nutmeg-5 on cardiac fibrosis after MI remain unclear. OBJECTIVE The aim of this study was to first explore the potential material basis and molecular mechanism of action of Nutmeg-5 in improving cardiac fibrosis after MI via a multiomics approach. METHODS The constituents in Nutmeg-5 were identified by ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). High-performance liquid chromatography (HPLC) and gas chromatography (GC)-based fingerprints of Nutmeg-5 were analysed, and characteristic peaks were identified by comparison to standard samples. A rat MI model was created by permanent ligation of the left anterior descending artery. The protective effect of Nutmeg-5 on cardiac fibrosis after MI was evaluated by tissue histology and measurement of the serum biomarkers of myocardial injury. Cardiac fibrosis levels were evaluated by Sirius red staining. Differentially expressed proteins in the myocardium and metabolites in the serum were explored by proteomic and untargeted metabolome analyses, respectively. Pearson correlation analysis was performed to explore the association between serum metabolites and myocardial proteins. RESULTS A total of 67 constituents were identified in Nutmeg-5 by UPLC-MS/MS. Sixteen components were identified in the fingerprint of Nutmeg-5 by comparison with a standard sample. Six lactones were isolated from Nutmeg-5 and quantified by HPLC and GC. MI was significantly alleviated in Nutmeg-5-treated rats compared to MI rats, as demonstrated by their decreased mortality, improved cardiac function, and attenuated cardiac fibrosis and myocardial injury. A total of 252 significant differential metabolites were identified in plasma between model and Nutmeg-5-treated rats by untargeted metabolome analysis. Among these, 36 critical metabolites were associated with Nutmeg-5 activity. Proteomic analysis identified 338 differentially expressed proteins in the rat myocardium between MI and Nutmeg-5-treated rats, including 204 upregulated and 134 downregulated proteins. Protein set enrichment analysis revealed that Nutmeg-5 treatment significantly inhibited the extracellular matrix (ECM)-receptor interaction pathway, which was activated in the myocardium of MI rats. A significant decrease in collagen and alpha smooth muscle actin expression levels was found in the myocardium of Nutmeg-5-treated rats compared to MI rats. These results illustrated that Nutmeg-5 had a significant protective effect on cardiac fibrosis after MI. A significant correlation was found between the ECM-receptor interaction pathway in the myocardium and critical metabolites in the serum. In addition, there were positive correlations between the levels of critical metabolites and the expression levels of transforming growth factor (TGF)-β1 and Smad2 in the rat myocardium. CONCLUSIONS Nutmeg-5 alleviated cardiac fibrosis after MI in rats by inhibiting the myocardial ECM-receptor interaction pathway and TGF-β1/Smad2 signalling, which was achieved by regulating plasma metabolites.
Collapse
Affiliation(s)
- Tingting Yan
- Department of Natural Medicinal Chemistry, College of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot 010110, PR China; Engineering Technology Research Center of Pharmacodynamic Substance and Quality Control of Mongolian Medicine in Inner Mongolia, Hohhot 010110, PR China
| | - Xiaoling Zhu
- Inner Mongolian International Mongolian Hospital, University East Street, Hohhot 010065, PR China
| | - Xueni Zhang
- Department of Natural Medicinal Chemistry, College of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot 010110, PR China; Engineering Technology Research Center of Pharmacodynamic Substance and Quality Control of Mongolian Medicine in Inner Mongolia, Hohhot 010110, PR China
| | - Xin Jia
- Department of Natural Medicinal Chemistry, College of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot 010110, PR China; Engineering Technology Research Center of Pharmacodynamic Substance and Quality Control of Mongolian Medicine in Inner Mongolia, Hohhot 010110, PR China; Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, PR China
| | - Jing Liu
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, PR China
| | - Xianjue Wang
- Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, PR China
| | - Yunfeng Xiao
- Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, PR China
| | - Zhibin Xiao
- Department of Clinical Pharmacy, College of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, PR China
| | - Tianlong Liu
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, PR China.
| | - Yu Dong
- Department of Natural Medicinal Chemistry, College of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot 010110, PR China; Engineering Technology Research Center of Pharmacodynamic Substance and Quality Control of Mongolian Medicine in Inner Mongolia, Hohhot 010110, PR China.
| |
Collapse
|
7
|
Song Y, Ren X, Gao F, Li F, Zhou J, Chen J, Zhang Y. LINC01588 regulates WWP2-mediated cardiomyocyte injury by interacting with HNRNPL. ENVIRONMENTAL TOXICOLOGY 2022; 37:1629-1641. [PMID: 35258167 DOI: 10.1002/tox.23512] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/25/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Cardiomyocyte dysfunction and apoptosis induced by ischemia-hypoxia are common features of many acute and chronic heart diseases. WW domain-containing E3 ubiquitin ligase (WWP2) has been identified as an important regulator in pathogenesis of some health-threatening diseases. Although a couple of recent reports prompted the potential role of WWP2 in heart dysfunction, however, its exact role and how its expression was regulated in ischemic-hypoxic cardiomyocytes are still elusive. Here, we found that WWP2 protein level was induced in anoxia/reoxygenation (A/R) treated cardiomyocytes in a time-dependent manner, accompanied by synchronous expression of LINC01588 and HNRNPL. Knockdown of LINC01588 increased cardiomyocyte apoptosis, the level of oxidative stress, and expression of pro-inflammatory cytokine genes, down-regulated the expression of WWP2 and promoted expression of SEPT4 gene that contributed to cardiomyocyte dysfunction and was a target gene of WWP2. LINC01588 overexpression improved the functions of A/R treated cardiomyocytes, up-regulated WWP2 and reduced SEPT4 expression. In the mechanism exploration, we found that LINC01588 could directly bind with HNRNPL protein that could interact with WWP2, suggesting that WWP2 was involved in the regulation of LINC01588 in A/R treated cardiomyocytes. Moreover, WWP2 inhibition declined the protective role of LINC01588 in cardiomyocyte dysfunction induced by A/R. Finally, we demonstrated that LINC01588 overexpression improved acute myocardial infarction in mice in vivo. In conclusion, LINC01588 improved A/R-induced cardiomyocyte dysfunction by interacting with HNRNPL and promoting WWP2-mediated degradation of SEPT4.
Collapse
Affiliation(s)
- Yanbin Song
- Department of Cardiovasology, Yan'an University Affiliated Hospital, China
- Heart and Brain Laboratory, Yan'an University Affiliated Hospital, China
| | - Xiaoyue Ren
- Department of Oncology, Yan'an University Affiliated Hospital, China
| | - Feng Gao
- Department of Cardiovasology, Yan'an University Affiliated Hospital, China
- Heart and Brain Laboratory, Yan'an University Affiliated Hospital, China
| | - Fei Li
- Department of Cardiovasology, Yan'an University Affiliated Hospital, China
- Heart and Brain Laboratory, Yan'an University Affiliated Hospital, China
| | - Jing Zhou
- Department of Cardiovasology, Yan'an University Affiliated Hospital, China
- Heart and Brain Laboratory, Yan'an University Affiliated Hospital, China
| | - Junmin Chen
- Department of Cardiovasology, Yan'an University Affiliated Hospital, China
- Heart and Brain Laboratory, Yan'an University Affiliated Hospital, China
| | - Yunqing Zhang
- Department of Pathology, Yan'an University Affiliated Hospital, China
| |
Collapse
|
8
|
Zhang Q, Guo Y, Zhang D. Network Pharmacology Integrated with Molecular Docking Elucidates the Mechanism of Wuwei Yuganzi San for the Treatment of Coronary Heart Disease. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221093907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction: The aim of this study was to investigate the pharmacological mechanism of Wuwei Yuganzi San (WYS) in treating coronary heart disease (CHD) using network pharmacology and molecular docking. Methods: The main active components, related targets, and the target genes related to WYS were investigated by the databases Traditional Chinese Medicine Systems Pharmacology and related articles. Information on the target genes of CHD was acquired through the OMIM database and GeneCards database, and the NCBI Gene Expression Omnibus DataSets (GSE71226) were used to acquire target genes of CHD. A Venn diagram was used to show the common targets of WYS and CHD. The compound-target-disease network was built up by Cytoscape 3.7.2, and the protein–protein interaction (PPI) network was acquired through the STRING database. ClusterProfiler and Pathview packages in RStudio software were used to conduct gene ontology enrichment analysis and KEGG pathway enrichment analysis to reveal the underlying mechanism. Finally, AutoDock Vina software was used to assess the binding affinity of significant ingredients and hub genes. Results: Thirty-four key ingredients of WYS in CHD were screened, which related to 59 targets in CHD. According to the results of enrichment analysis, 59 items in the biological process, 15 items in the molecular function, 10 items in the cellular component, and 52 signaling pathways were associated with efficacy. These processes and pathways were essential for cell survival and were related to several crucial factors of CHD, including a disintegrin and metalloprotease 17 (ADAM17), aldo-keto reductase family 1 member C2 (AKR1C2), albumin (ALB), protein kinase B (AKT1), and alcohol dehydrogenase 1C (ADH1C). Based on the outcomes of the PPI network, we selected ADAM17, AKR1C2, ALB, AKT1, ADH1C, and putative ingredients (sennoside D_qt, quercetin, and procyanidin B-5,3'- O-gallate) to perform molecular docking validation. From the molecular docking outcomes, some vital targets of CHD (including ADAM17, AKR1C2, ALB, AKT1, and ADH1C) could be related to form a stable combination with the putative ingredients of WYS. Conclusions: The network pharmacology and molecular docking study elucidated basically the mechanism of WYS in the treatment of CHD.
Collapse
Affiliation(s)
- Qunhui Zhang
- Research Center for High Altitude Medicine, Medical College of Qinghai University, Xining, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining, China
- Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Xining, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Yang Guo
- Research Center for High Altitude Medicine, Medical College of Qinghai University, Xining, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining, China
- Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Xining, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Dejun Zhang
- Research Center for High Altitude Medicine, Medical College of Qinghai University, Xining, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| |
Collapse
|
9
|
Bu W, Zhang Z, Ocansey DKW, Yu Z, Yang X, Liu Z, Wang X, Ke Y. Research on natural products from traditional Chinese medicine in the treatment of myocardial ischemia-reperfusion injury. Am J Transl Res 2022; 14:1952-1968. [PMID: 35422902 PMCID: PMC8991172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a complicated pathologic process that involves multiple factors including oxidative stress (free radical damage), inflammatory response, calcium overloading, and apoptosis in cardiomyocytes. According to Traditional Chinese Medicine (TCM), MIRI belongs to the categories of "chest numbness", "palpitations" and "angina pectoris". Present data indicate that the application of TCM in myocardial ischemia-reperfusion injury is promising and continues to attract research attention. While the efficacy of Chinese herbal medicine has been well-proven, the underlying molecular mechanisms remain elusive. The common proven mechanisms of Chinese herbal medicine in the treatment of MIRI include regulating lipid metabolism, protecting mitochondria, and improving energy metabolism, attenuating calcium (Ca2+) overload, scavenging oxygen free radicals, inhibiting apoptosis, and reducing autophagy. Others are the regulation of inflammatory cytokine expressions and healing of inflammatory lesions, modulation of cell signaling pathways, improvement of endothelial cell function, and protection of myocardial cells. In this review, we highlight recent studies that focus on elucidating these molecular mechanisms and the therapeutic effects of natural compounds deriving from TCM in MIRI, to ascertain the research progress made and the prospects in this field.
Collapse
Affiliation(s)
- Wenyu Bu
- The First Clinical Medical Institute, Hubei University of Chinese MedicineWuhan 430060, Hubei, China
| | - Zhaoyang Zhang
- Taicang Hospital of Traditional Chinese MedicineSuzhou 215400, Jiangsu, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
- Directorate of University Health Services, University of Cape Coast, PMBCape Coast, Ghana
| | - Zhihua Yu
- Department of Cardiology, Wuhan Hospital of Traditional Chinese and Western MedicineWuhan 430022, Hubei, China
| | - Xiao Yang
- The First Clinical Medical Institute, Hubei University of Chinese MedicineWuhan 430060, Hubei, China
| | - Zhitong Liu
- The First Clinical Medical Institute, Hubei University of Chinese MedicineWuhan 430060, Hubei, China
| | - Xinyu Wang
- The First Clinical Medical Institute, Hubei University of Chinese MedicineWuhan 430060, Hubei, China
| | - Yuhe Ke
- The First Clinical Medical Institute, Hubei University of Chinese MedicineWuhan 430060, Hubei, China
- Department of Cardiology, Wuhan Hospital of Traditional Chinese and Western MedicineWuhan 430022, Hubei, China
| |
Collapse
|