1
|
Carranza-Aranda AS, Jave-Suárez LF, Flores-Hernández FY, Huizar-López MDR, Herrera-Rodríguez SE, Santerre A. In silico and in vitro study of FLT3 inhibitors and their application in acute myeloid leukemia. Mol Med Rep 2024; 30:229. [PMID: 39392050 PMCID: PMC11475230 DOI: 10.3892/mmr.2024.13353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is the most common hematological cancer in the adult population worldwide. Approximately 35% of patients with AML present internal tandem duplication (ITD) mutations in the FMS‑like tyrosine kinase 3 (FLT3) receptor associated with poor prognosis, and thus, this receptor is a relevant target for potential therapeutics. Tyrosine kinase inhibitors (TKIs) are used to treat AML; however, their molecular interactions and effects on leukemic cells are poorly understood. The present study aimed to gain insights into the molecular interactions and affinity forces of four TKI drugs (sorafenib, midostaurin, gilteritinib and quizartinib) with the wild‑type (WT)‑FLT3 and ITD‑mutated (ITD‑FLT3) structural models of FLT3, in its inactive aspartic acid‑phenylalanine‑glycine motif (DFG‑out) and active aspartic acid‑phenylalanine‑glycine motif (DFG‑in) conformations. Furthermore, the present study evaluated the effects of the second‑generation TKIs gilteritinib and quizartinib on cancer cell viability, apoptosis and proliferation in the MV4‑11 (ITD‑FLT3) and HL60 (WT‑FLT3) AML cell lines. Peripheral blood mononuclear cells (PBMCs) from a healthy volunteer were included as an FLT3‑negative group. Molecular docking analysis indicated higher affinities of second‑generation TKIs for WT‑FLT3/DFG‑out and WT‑FLT3/DFG‑in compared with those of the first‑generation TKIs. However, the ITD mutation changed the affinity of all TKIs. The in vitro data supported the in silico predictions: MV4‑11 cells presented high selective sensibility to gilteritinib and quizartinib compared with the HL60 cells, whereas the drugs had no effect on PBMCs. Thus, the current study presented novel information about molecular interactions between the FLT3 receptors (WT or ITD‑mutated) and some of their inhibitors. It also paves the way for the search for novel inhibitory molecules with potential use against AML.
Collapse
Affiliation(s)
- Ahtziri S. Carranza-Aranda
- Biomedicine and Ecology Molecular Markers Laboratory, Department of Cellular and Molecular Biology, Biological and Agricultural Sciences Campus, University of Guadalajara, Zapopan, Jalisco 44600, Mexico
| | - Luis Felipe Jave-Suárez
- Division of Immunology, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, Mexico
| | - Flor Y. Flores-Hernández
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of The State of Jalisco, Guadalajara, Jalisco 44270, Mexico
| | - María Del Rosario Huizar-López
- Biomedicine and Ecology Molecular Markers Laboratory, Department of Cellular and Molecular Biology, Biological and Agricultural Sciences Campus, University of Guadalajara, Zapopan, Jalisco 44600, Mexico
| | - Sara E. Herrera-Rodríguez
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of The State of Jalisco, Merida, Yucatan 97302, Mexico
| | - Anne Santerre
- Biomedicine and Ecology Molecular Markers Laboratory, Department of Cellular and Molecular Biology, Biological and Agricultural Sciences Campus, University of Guadalajara, Zapopan, Jalisco 44600, Mexico
| |
Collapse
|
2
|
Fasouli ES, Katsantoni E. Age-associated myeloid malignancies - the role of STAT3 and STAT5 in myelodysplastic syndrome and acute myeloid leukemia. FEBS Lett 2024; 598:2809-2828. [PMID: 39048534 PMCID: PMC11586607 DOI: 10.1002/1873-3468.14985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
In the last few decades, the increasing human life expectancy has led to the inflation of the elderly population and consequently the escalation of age-related disorders. Biological aging has been associated with the accumulation of somatic mutations in the Hematopoietic Stem Cell (HSC) compartment, providing a fitness advantage to the HSCs leading to clonal hematopoiesis, that includes non-malignant and malignant conditions (i.e. Clonal Hematopoiesis of Indeterminate Potential, Myelodysplastic Syndrome and Acute Myeloid Leukemia). The Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway is a key player in both normal and malignant hematopoiesis. STATs, particularly STAT3 and STAT5, are greatly implicated in normal hematopoiesis, immunity, inflammation, leukemia, and aging. Here, the pleiotropic functions of JAK-STAT pathway in age-associated hematopoietic defects and of STAT3 and STAT5 in normal hematopoiesis, leukemia, and inflammaging are reviewed. Even though great progress has been made in deciphering the role of STATs, further research is required to provide a deeper understanding of the molecular mechanisms of leukemogenesis, as well as novel biomarkers and therapeutic targets for improved management of age-related disorders.
Collapse
Affiliation(s)
- Eirini Sofia Fasouli
- Biomedical Research FoundationAcademy of Athens, Basic Research CenterAthensGreece
| | - Eleni Katsantoni
- Biomedical Research FoundationAcademy of Athens, Basic Research CenterAthensGreece
| |
Collapse
|
3
|
Gao C, Li X, Xu Y, Zhang T, Zhu H, Yao D. Recent advances in CAR-T cell therapy for acute myeloid leukaemia. J Cell Mol Med 2024; 28:e18369. [PMID: 38712978 PMCID: PMC11075639 DOI: 10.1111/jcmm.18369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/18/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024] Open
Abstract
Acute myeloid leukaemia (AML) is a fatal and refractory haematologic cancer that primarily affects adults. It interferes with bone marrow cell proliferation. Patients have a 5 years survival rate of less than 30% despite the availability of several treatments, including chemotherapy, allogeneic haematopoietic stem cell transplantation (Allo-HSCT), and receptor antagonist drugs. Allo-HSCT is the mainstay of acute myeloid leukaemia treatment. Although it does work, there are severe side effects, such as graft-versus-host disease (GVHD). In recent years, chimeric antigen receptor (CAR)-T cell therapies have made significant progress in the treatment of cancer. These engineered T cells can locate and recognize tumour cells in vivo and release a large number of effectors through immune action to effectively kill tumour cells. CAR-T cells are among the most effective cancer treatments because of this property. CAR-T cells have demonstrated positive therapeutic results in the treatment of acute myeloid leukaemia, according to numerous clinical investigations. This review highlights recent progress in new targets for AML immunotherapy, and the limitations, and difficulties of CAR-T therapy for AML.
Collapse
Affiliation(s)
- Chi Gao
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanChina
| | - Xin Li
- College of BiotechnologyTianjin University of Science and TechnologyTianjinChina
| | - Yao Xu
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanChina
| | - Tongcun Zhang
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanChina
- Institute of Biology and MedicineWuhan University of Science and TechnologyWuhanChina
| | - Haichuan Zhu
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanChina
| | - Di Yao
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanChina
| |
Collapse
|
4
|
Macečková D, Vaňková L, Holubová M, Jindra P, Klieber R, Jandová E, Pitule P. Current knowledge about FLT3 gene mutations, exploring the isoforms, and protein importance in AML. Mol Biol Rep 2024; 51:521. [PMID: 38625438 DOI: 10.1007/s11033-024-09452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
Acute myeloid leukaemia (AML) is a complex haematological malignancy characterised by diverse genetic alterations leading to abnormal proliferation of myeloid precursor cells. One of the most significant genetic alterations in AML involves mutations in the FLT3 gene, which plays a critical role in haematopoiesis and haematopoietic homeostasis. This review explores the current understanding of FLT3 gene mutations and isoforms and the importance of the FLT3 protein in AML. FLT3 mutations, including internal tandem duplications (FLT3-ITD) and point mutations in the tyrosine kinase domain (FLT3-TKD), occur in 25-30% in AML and are associated with poor prognosis. FLT3-ITD mutations lead to constitutive activation of the FLT3 signalling pathway, promoting cell survival and proliferation. FLT3-TKD mutations affect the tyrosine kinase domain and affect AML prognosis in various ways. Furthermore, FLT3 isoforms, including shorter variants, contribute to the complexity of FLT3 biology. Additionally, nonpathological polymorphisms in FLT3 are being explored for their potential impact on AML prognosis and treatment response. This review also discusses the development of molecular treatments targeting FLT3, including first-generation and next-generation tyrosine kinase inhibitors, highlighting the challenges of resistance that often arise during therapy. The final chapter describes FLT3 protein domain rearrangements and their relevance to AML pathogenesis.
Collapse
Affiliation(s)
- Diana Macečková
- Laboratory of Tumor Biology and Immunotherapy Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, Pilsen, 32300, Czechia.
| | - Lenka Vaňková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Monika Holubová
- Laboratory of Tumor Biology and Immunotherapy Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, Pilsen, 32300, Czechia
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, Czechia
| | - Pavel Jindra
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, Czechia
| | - Robin Klieber
- Laboratory of Tumor Biology and Immunotherapy Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, Pilsen, 32300, Czechia
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, Czechia
| | - Eliška Jandová
- Laboratory of Tumor Biology and Immunotherapy Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, Pilsen, 32300, Czechia
| | - Pavel Pitule
- Laboratory of Tumor Biology and Immunotherapy Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, Pilsen, 32300, Czechia
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| |
Collapse
|
5
|
Bogdanov K, Kudryavtseva E, Fomicheva Y, Churkina I, Lomaia E, Girshova L, Osipov Y, Zaritskey A. Shift of N-MYC Oncogene Expression in AML Patients Carrying the FLT3-ITD Mutation. PATHOPHYSIOLOGY 2023; 30:296-313. [PMID: 37606386 PMCID: PMC10443239 DOI: 10.3390/pathophysiology30030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 07/29/2023] [Indexed: 08/23/2023] Open
Abstract
Mutations in the FLT3 gene not only lead to abnormalities in its structure and function, but also affect the expression of other genes involved in leukemogenesis. This study evaluated the expression of genes that are more characteristic of neuroblastoma but less studied in leukemia. N-MYC oncogene expression was found to be more than 3-fold higher in primary AML patients carrying the FLT3-ITD mutation compared to carriers of other mutations as well as patients with normal karyotype (p = 0.03946). In contrast to the expression of several genes (C-MYC, SPT16, AURKA, AURKB) directly correlated to the allelic load of FLT3-ITD, the expression of the N-MYC oncogene is extremely weakly related or independent of it (p = 0.0405). Monitoring of N-MYC expression in some patients with high FLT3-ITD allelic load receiving therapy showed that a decrease in FLT3-ITD allelic load is not always accompanied by a decrease in N-MYC expression. On the contrary, N-MYC expression may remain elevated during the first three months after therapy, which is additional evidence of the emergence of resistance to therapy and progression of AML.
Collapse
Affiliation(s)
- Konstantin Bogdanov
- Almazov National Medical Research Centre, 2 Akkuratova Str., Saint Petersburg 197341, Russia; (E.K.); (Y.F.); (I.C.); (E.L.); (L.G.); (Y.O.); (A.Z.)
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Haage TR, Schraven B, Mougiakakos D, Fischer T. How ITD Insertion Sites Orchestrate the Biology and Disease of FLT3-ITD-Mutated Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:cancers15112991. [PMID: 37296951 DOI: 10.3390/cancers15112991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Mutations of the FLT3 gene are among the most common genetic aberrations detected in AML and occur mainly as internal tandem duplications (FLT3-ITD). However, the specific sites of FLT3-ITD insertion within FLT3 show marked heterogeneity regarding both biological and clinical features. In contrast to the common assumption that ITD insertion sites (IS) are restricted to the juxtamembrane domain (JMD) of FLT3, 30% of FLT3-ITD mutations insert at the non-JMD level, thereby integrating into various segments of the tyrosine kinase subdomain 1 (TKD1). ITDs inserted within TKD1 have been shown to be associated with inferior complete remission rates as well as shorter relapse-free and overall survival. Furthermore, resistance to chemotherapy and tyrosine kinase inhibition (TKI) is linked to non-JMD IS. Although FLT3-ITD mutations in general are already recognized as a negative prognostic marker in currently used risk stratification guidelines, the even worse prognostic impact of non-JMD-inserting FLT3-ITD has not yet been particularly considered. Recently, the molecular and biological assessment of TKI resistance highlighted the pivotal role of activated WEE1 kinase in non-JMD-inserting ITDs. Overcoming therapy resistance in non-JMD FLT3-ITD-mutated AML may lead to more effective genotype- and patient-specific treatment approaches.
Collapse
Affiliation(s)
- Tobias R Haage
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Gesundheitscampus Immunology, Inflammation and Infectiology (GC-I3), Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Burkhart Schraven
- Gesundheitscampus Immunology, Inflammation and Infectiology (GC-I3), Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center of Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39106 Magdeburg, Germany
| | - Dimitrios Mougiakakos
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Gesundheitscampus Immunology, Inflammation and Infectiology (GC-I3), Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Thomas Fischer
- Gesundheitscampus Immunology, Inflammation and Infectiology (GC-I3), Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
7
|
Wu S, Chi C, Weng S, Zhou W, Liu Z. IGF2BP2 promotes lncRNA DANCR stability mediated glycolysis and affects the progression of FLT3-ITD + acute myeloid leukemia. Apoptosis 2023:10.1007/s10495-023-01846-0. [PMID: 37060505 DOI: 10.1007/s10495-023-01846-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2023] [Indexed: 04/16/2023]
Abstract
Internal tandem duplication (ITD) is the most common type of FLT3 mutation (FLT3-ITD), accounting for about 25% of AML patients. The expression of DANCR in FLT3-ITD AML had not been paid attention to, and whether its regulatory relationship with IGF2BP2 can affect the progression of FLT3-ITD AML was unclear. Our study sought to verify the biological role of IGF2BP2 as an m6A reading protein in FLT3-ITD AML. To further explore the role and mechanism of DANCR in AML, and provide a basis for the screening of biomarkers and the development of targeted drugs. The results show that IGF2BP2 was upregulated in FLT3-ITD+ AML patients and cells. Si-IGF2BP2 could inhibit the proliferation, glycolytic and promote the apoptosis in MV4-11 cells. IGF2BP2 could promote the DANCR RNA stability. This discovery will provide new horizons for early screening and targeted therapy of FLT3-ITD+ AML.
Collapse
Affiliation(s)
- Shenghao Wu
- Department of Hematology, The Dingli Clinical College of Wenzhou Medical University (The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital), Wenzhou city, Zhejiang Province, China.
| | - Changwei Chi
- Department of Hematology, The Dingli Clinical College of Wenzhou Medical University (The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital), Wenzhou city, Zhejiang Province, China
| | - Shanshan Weng
- Department of Hematology, The Dingli Clinical College of Wenzhou Medical University (The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital), Wenzhou city, Zhejiang Province, China
| | - Wenjin Zhou
- Department of Hematology, The Dingli Clinical College of Wenzhou Medical University (The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital), Wenzhou city, Zhejiang Province, China
| | - Zhen Liu
- Department of Hematology, The Dingli Clinical College of Wenzhou Medical University (The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital), Wenzhou city, Zhejiang Province, China
| |
Collapse
|
8
|
Genomic Alterations, Gene Expression Profiles and Functional Enrichment of Normal-Karyotype Acute Myeloid Leukaemia Based on Targeted Next-Generation Sequencing. Cancers (Basel) 2023; 15:cancers15051386. [PMID: 36900179 PMCID: PMC10000176 DOI: 10.3390/cancers15051386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Characterising genomic variants is paramount in understanding the pathogenesis and heterogeneity of normal-karyotype acute myeloid leukaemia (AML-NK). In this study, clinically significant genomic biomarkers were ascertained using targeted DNA sequencing and RNA sequencing on eight AML-NK patients' samples collected at disease presentation and after complete remission. In silico and Sanger sequencing validations were performed to validate variants of interest, and they were followed by the performance of functional and pathway enrichment analyses for overrepresentation analysis of genes with somatic variants. Somatic variants involving 26 genes were identified and classified as follows: 18/42 (42.9%) as pathogenic, 4/42 (9.5%) as likely pathogenic, 4/42 (9.5%) as variants of unknown significance, 7/42 (16.7%) as likely benign and 9/42 (21.4%) as benign. Nine novel somatic variants were discovered, of which three were likely pathogenic, in the CEBPA gene with significant association with its upregulation. Transcription misregulation in cancer tops the affected pathways involving upstream genes (CEBPA and RUNX1) that were deregulated in most patients during disease presentation and were closely related to the most enriched molecular function gene ontology category, DNA-binding transcription activator activity RNA polymerase II-specific (GO:0001228). In summary, this study elucidated putative variants and their gene expression profiles along with functional and pathway enrichment in AML-NK patients.
Collapse
|
9
|
Schorr C, Perna F. Targets for chimeric antigen receptor T-cell therapy of acute myeloid leukemia. Front Immunol 2022; 13:1085978. [PMID: 36605213 PMCID: PMC9809466 DOI: 10.3389/fimmu.2022.1085978] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Acute Myeloid Leukemia (AML) is an aggressive myeloid malignancy associated with high mortality rates (less than 30% 5-year survival). Despite advances in our understanding of the molecular mechanisms underpinning leukemogenesis, standard-of-care therapeutic approaches have not changed over the last couple of decades. Chimeric Antigen Receptor (CAR) T-cell therapy targeting CD19 has shown remarkable clinical outcomes for patients with acute lymphoblastic leukemia (ALL) and is now an FDA-approved therapy. Targeting of myeloid malignancies that are CD19-negative with this promising technology remains challenging largely due to lack of alternate target antigens, complex clonal heterogeneity, and the increased recognition of an immunosuppressive bone marrow. We carefully reviewed a comprehensive list of AML targets currently being used in both proof-of-concept pre-clinical and experimental clinical settings. We analyzed the expression profile of these molecules in leukemic as well normal tissues using reliable protein databases and data reported in the literature and we provide an updated overview of the current clinical trials with CAR T-cells in AML. Our study represents a state-of-art review of the field and serves as a potential guide for selecting known AML-associated targets for adoptive cellular therapies.
Collapse
Affiliation(s)
- Christopher Schorr
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States,Department of Biomedical Engineering, Purdue University Weldon School of Biomedical Engineering, West Lafayette, IN, United States
| | - Fabiana Perna
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States,*Correspondence: Fabiana Perna,
| |
Collapse
|
10
|
No Evidence that CD33 rs12459419 Polymorphism Predicts Gemtuzumab Ozogamicin Response in Consolidation Treatment of Acute Myeloid Leukemia Patients: Experience of the PETHEMA Group. DISEASE MARKERS 2022; 2022:3132941. [PMID: 36051360 PMCID: PMC9427256 DOI: 10.1155/2022/3132941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/03/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
Gemtuzumab ozogamicin (GO) is a conjugate of a monoclonal antibody and calicheamicin, which has been reapproved for the treatment of acute myeloid leukemia (AML). AML patients with the CD33 rs12459419 CC genotype might benefit from the addition of GO to intensive treatment in contrast to patients with CT/TT genotypes. Nevertheless, contradictory results have been reported. We sought to shed light on the prediction of GO response in AML patients with rs12459419 polymorphism who were treated with GO in the consolidation (n = 70) or reinduction (n = 20) phase. The frequency distribution of the rs12459419 polymorphism in the complete cohort of patients was 44.4% (n = 40), 50% (n = 45), and 5.6% (n = 5) for CC, CT, and TT genotypes, respectively. Regarding the patients treated with GO for consolidation, we performed a Kaplan-Meier analysis of overall survival and relapse-free survival according to the rs12459419 polymorphism (CC vs. CT/TT patients) and genetic risk using the European Leukemia Net (ELN) 2010 risk score. We also carried out a Cox regression analysis for the prediction of overall survival, with age and ELN 2010 as covariates. We found no statistical significance in the univariate or multivariate analysis. Additionally, we performed a global Kaplan-Meier analysis for the patients treated with GO for reinduction and did not find significant differences; however, our cohort was too small to draw any conclusion from this analysis. The use of GO in consolidation treatment is included in the approval of the compound; however, evidence regarding its efficacy in this setting is lacking. Rs12459419 polymorphism could help in the selection of patients who might benefit from GO. Regrettably, in our cohort, the rs12459419 polymorphism does not seem to be an adequate tool for the selection of patients who might benefit from the addition of GO in consolidation cycles.
Collapse
|
11
|
Knight TE, Edwards H, Meshinchi S, Taub JW, Ge Y. "FLipping" the Story: FLT3-Mutated Acute Myeloid Leukemia and the Evolving Role of FLT3 Inhibitors. Cancers (Basel) 2022; 14:3398. [PMID: 35884458 PMCID: PMC9315611 DOI: 10.3390/cancers14143398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 12/19/2022] Open
Abstract
The treatment of many types of cancers, including acute myeloid leukemia (AML), has been revolutionized by the development of therapeutics targeted at crucial molecular drivers of oncogenesis. In contrast to broad, relatively indiscriminate conventional chemotherapy, these targeted agents precisely disrupt key pathways within cancer cells. FMS-like tyrosine kinase 3 (FLT3)-encoding a critical regulator of hematopoiesis-is the most frequently mutated gene in patients with AML, and these mutations herald reduced survival and increased relapse in these patients. Approximately 30% of newly diagnosed AML carries an FLT3 mutation; of these, approximately three-quarters are internal tandem duplication (ITD) mutations, and the remainder are tyrosine kinase domain (TKD) mutations. In contrast to its usual, tightly controlled expression, FLT3-ITD mutants allow constitutive, "run-away" activation of a large number of key downstream pathways which promote cellular proliferation and survival. Targeted inhibition of FLT3 is, therefore, a promising therapeutic avenue. In April 2017, midostaurin became both the first FLT3 inhibitor and the first targeted therapy of any kind in AML to be approved by the US FDA. The use of FLT3 inhibitors has continued to grow as clinical trials continue to demonstrate the efficacy of this class of agents, with an expanding number available for use as both experimental standard-of-care usage. This review examines the biology of FLT3 and its downstream pathways, the mechanism of FLT3 inhibition, the development of the FLT3 inhibitors as a class and uses of the agents currently available clinically, and the mechanisms by which resistance to FLT3 inhibition may both develop and be overcome.
Collapse
Affiliation(s)
- Tristan E. Knight
- Cancer and Blood Disorders Center, Seattle Children’s Hospital, Seattle, WA 98105, USA;
- Division of Hematology and Oncology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48202, USA; (H.E.); (Y.G.)
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Soheil Meshinchi
- Cancer and Blood Disorders Center, Seattle Children’s Hospital, Seattle, WA 98105, USA;
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jeffrey W. Taub
- Division of Hematology/Oncology, Children’s Hospital of Michigan, Detroit, MI 48201, USA;
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Department of Pediatrics, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48202, USA; (H.E.); (Y.G.)
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
12
|
Role of Biomarkers in FLT3 AML. Cancers (Basel) 2022; 14:cancers14051164. [PMID: 35267471 PMCID: PMC8909069 DOI: 10.3390/cancers14051164] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Genetically heterogeneous disorder acute myeloid leukemia (AML) is marked by recurring mutations in FLT3. Current FLT3 inhibitors and other emerging inhibitors have helped in the improvement of the quality of standard of care therapies; however, the overall survival of the patients remains static. This is due to numerous mutations in FLT3, which causes resistance against these FLT3 inhibitors. For effective treatment of AML patients, alternative approaches are required to overcome this resistance. Here, we will summarize the biomarkers for FLT3 inhibitors in AML, as well as the alternative measures to overcome resistance to the current therapies. Abstract Acute myeloid leukemia is a disease characterized by uncontrolled proliferation of clonal myeloid blast cells that are incapable of maturation to leukocytes. AML is the most common leukemia in adults and remains a highly fatal disease with a five-year survival rate of 24%. More than 50% of AML patients have mutations in the FLT3 gene, rendering FLT3 an attractive target for small-molecule inhibition. Currently, there are several FLT3 inhibitors in the clinic, and others remain in clinical trials. However, these inhibitors face challenges due to lack of efficacy against several FLT3 mutants. Therefore, the identification of biomarkers is vital to stratify AML patients and target AML patient population with a particular FLT3 mutation. Additionally, there is an unmet need to identify alternative approaches to combat the resistance to FLT3 inhibitors. Here, we summarize the current knowledge on the utilization of diagnostic, prognostic, predictive, and pharmacodynamic biomarkers for FLT3-mutated AML. The resistance mechanisms to various FLT3 inhibitors and alternative approaches to combat this resistance are also discussed and presented.
Collapse
|