3
|
Barry N, Francis RJ, Ebert MA, Koh ES, Rowshanfarzad P, Hassan GM, Kendrick J, Gan HK, Lee ST, Lau E, Moffat BA, Fitt G, Moore A, Thomas P, Pattison DA, Akhurst T, Alipour R, Thomas EL, Hsiao E, Schembri GP, Lin P, Ly T, Yap J, Kirkwood I, Vallat W, Khan S, Krishna D, Ngai S, Yu C, Beuzeville S, Yeow TC, Bailey D, Cook O, Whitehead A, Dykyj R, Rossi A, Grose A, Scott AM. Delineation and agreement of FET PET biological volumes in glioblastoma: results of the nuclear medicine credentialing program from the prospective, multi-centre trial evaluating FET PET In Glioblastoma (FIG) study-TROG 18.06. Eur J Nucl Med Mol Imaging 2023; 50:3970-3981. [PMID: 37563351 PMCID: PMC10611835 DOI: 10.1007/s00259-023-06371-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023]
Abstract
PURPOSE The O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) PET in Glioblastoma (FIG) trial is an Australian prospective, multi-centre study evaluating FET PET for glioblastoma patient management. FET PET imaging timepoints are pre-chemoradiotherapy (FET1), 1-month post-chemoradiotherapy (FET2), and at suspected progression (FET3). Before participant recruitment, site nuclear medicine physicians (NMPs) underwent credentialing of FET PET delineation and image interpretation. METHODS Sites were required to complete contouring and dynamic analysis by ≥ 2 NMPs on benchmarking cases (n = 6) assessing biological tumour volume (BTV) delineation (3 × FET1) and image interpretation (3 × FET3). Data was reviewed by experts and violations noted. BTV definition includes tumour-to-background ratio (TBR) threshold of 1.6 with crescent-shaped background contour in the contralateral normal brain. Recurrence/pseudoprogression interpretation (FET3) required assessment of maximum TBR (TBRmax), dynamic analysis (time activity curve [TAC] type, time to peak), and qualitative assessment. Intraclass correlation coefficient (ICC) assessed volume agreement, coefficient of variation (CoV) compared maximum/mean TBR (TBRmax/TBRmean) across cases, and pairwise analysis assessed spatial (Dice similarity coefficient [DSC]) and boundary agreement (Hausdorff distance [HD], mean absolute surface distance [MASD]). RESULTS Data was accrued from 21 NMPs (10 centres, n ≥ 2 each) and 20 underwent review. The initial pass rate was 93/119 (78.2%) and 27/30 requested resubmissions were completed. Violations were found in 25/72 (34.7%; 13/12 minor/major) of FET1 and 22/74 (29.7%; 14/8 minor/major) of FET3 reports. The primary reasons for resubmission were as follows: BTV over-contour (15/30, 50.0%), background placement (8/30, 26.7%), TAC classification (9/30, 30.0%), and image interpretation (7/30, 23.3%). CoV median and range for BTV, TBRmax, and TBRmean were 21.53% (12.00-30.10%), 5.89% (5.01-6.68%), and 5.01% (3.37-6.34%), respectively. BTV agreement was moderate to excellent (ICC = 0.82; 95% CI, 0.63-0.97) with good spatial (DSC = 0.84 ± 0.09) and boundary (HD = 15.78 ± 8.30 mm; MASD = 1.47 ± 1.36 mm) agreement. CONCLUSION The FIG study credentialing program has increased expertise across study sites. TBRmax and TBRmean were robust, with considerable variability in BTV delineation and image interpretation observed.
Collapse
Affiliation(s)
- Nathaniel Barry
- School of Physics, Mathematics and Computing, University of Western Australia, WA, Crawley, Australia.
- Centre for Advanced Technologies in Cancer Research (CATCR), WA, Perth, Australia.
| | - Roslyn J Francis
- Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- Australian Centre for Quantitative Imaging, Medical School, University of Western Australia, Crawley, WA, Australia
| | - Martin A Ebert
- School of Physics, Mathematics and Computing, University of Western Australia, WA, Crawley, Australia
- Centre for Advanced Technologies in Cancer Research (CATCR), WA, Perth, Australia
- Australian Centre for Quantitative Imaging, Medical School, University of Western Australia, Crawley, WA, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Eng-Siew Koh
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres, Liverpool, NSW, Australia
- South Western Sydney Clinical School, UNSW Medicine, University of New South Wales, Liverpool, NSW, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, University of Western Australia, WA, Crawley, Australia
- Centre for Advanced Technologies in Cancer Research (CATCR), WA, Perth, Australia
| | - Ghulam Mubashar Hassan
- School of Physics, Mathematics and Computing, University of Western Australia, WA, Crawley, Australia
| | - Jake Kendrick
- School of Physics, Mathematics and Computing, University of Western Australia, WA, Crawley, Australia
- Centre for Advanced Technologies in Cancer Research (CATCR), WA, Perth, Australia
| | - Hui K Gan
- Department of Medical Oncology, Austin Hospital, Melbourne, VIC, Australia
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Sze T Lee
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia
| | - Eddie Lau
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia
- Department of Radiology, Austin Health, Melbourne, VIC, Australia
- Department of Radiology, University of Melbourne, Melbourne, VIC, Australia
| | - Bradford A Moffat
- Department of Radiology, University of Melbourne, Melbourne, VIC, Australia
| | - Greg Fitt
- Department of Radiology, Austin Health, Melbourne, VIC, Australia
| | - Alisha Moore
- Trans Tasman Radiation Oncology Group (TROG Cancer Research), University of Newcastle, Callaghan, NSW, Australia
| | - Paul Thomas
- Department of Nuclear Medicine, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - David A Pattison
- Department of Nuclear Medicine, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - Tim Akhurst
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, Melbourne, VIC, Australia
| | - Ramin Alipour
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, Melbourne, VIC, Australia
| | - Elizabeth L Thomas
- Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Edward Hsiao
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Geoffrey P Schembri
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Peter Lin
- South Western Sydney Clinical School, UNSW Medicine, University of New South Wales, Liverpool, NSW, Australia
- Department of Nuclear Medicine, Liverpool Hospital, Liverpool, NSW, Australia
| | - Tam Ly
- Department of Nuclear Medicine, Liverpool Hospital, Liverpool, NSW, Australia
| | - June Yap
- Department of Nuclear Medicine, Liverpool Hospital, Liverpool, NSW, Australia
| | - Ian Kirkwood
- Department of Nuclear Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Wilson Vallat
- Department of Nuclear Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Shahroz Khan
- Department of Nuclear Medicine, Canberra Hospital, Woden, ACT, Australia
| | - Dayanethee Krishna
- Department of Nuclear Medicine, Canberra Hospital, Woden, ACT, Australia
| | - Stanley Ngai
- Department of Nuclear Medicine, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Chris Yu
- Department of Nuclear Medicine, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Scott Beuzeville
- Department of Nuclear Medicine, St George Hospital, Kogarah, NSW, Australia
| | - Tow C Yeow
- Department of Nuclear Medicine, St George Hospital, Kogarah, NSW, Australia
| | - Dale Bailey
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia
- Faculty of Medicine 7 Health, University of Sydney, Sydney, NSW, Australia
| | - Olivia Cook
- Trans Tasman Radiation Oncology Group (TROG Cancer Research), University of Newcastle, Callaghan, NSW, Australia
| | - Angela Whitehead
- Trans Tasman Radiation Oncology Group (TROG Cancer Research), University of Newcastle, Callaghan, NSW, Australia
| | - Rachael Dykyj
- Trans Tasman Radiation Oncology Group (TROG Cancer Research), University of Newcastle, Callaghan, NSW, Australia
| | - Alana Rossi
- Trans Tasman Radiation Oncology Group (TROG Cancer Research), University of Newcastle, Callaghan, NSW, Australia
| | - Andrew Grose
- Trans Tasman Radiation Oncology Group (TROG Cancer Research), University of Newcastle, Callaghan, NSW, Australia
| | - Andrew M Scott
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Soni N, Ora M, Jena A, Rana P, Mangla R, Ellika S, Almast J, Puri S, Meyers SP. Amino Acid Tracer PET MRI in Glioma Management: What a Neuroradiologist Needs to Know. AJNR Am J Neuroradiol 2023; 44:236-246. [PMID: 36657945 PMCID: PMC10187808 DOI: 10.3174/ajnr.a7762] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 01/21/2023]
Abstract
PET with amino acid tracers provides additional insight beyond MR imaging into the biology of gliomas that can be used for initial diagnosis, delineation of tumor margins, planning of surgical and radiation therapy, assessment of residual tumor, and evaluation of posttreatment response. Hybrid PET MR imaging allows the simultaneous acquisition of various PET and MR imaging parameters in a single investigation with reduced scanning time and improved anatomic localization. This review aimed to provide neuroradiologists with a concise overview of the various amino acid tracers and a practical understanding of the clinical applications of amino acid PET MR imaging in glioma management. Future perspectives in newer advances, novel radiotracers, radiomics, and cost-effectiveness are also outlined.
Collapse
Affiliation(s)
- N Soni
- From the University of Rochester Medical Center (N.S., S.E., J.A., S.P., S.M.), Rochester, New York
| | - M Ora
- Sanjay Gandhi Postgraduate Institute of Medical Sciences (M.O.), Lucknow, Uttar Pradesh, India
| | - A Jena
- Indraprastha Apollo Hospital (A.J., P.R.), New Delhi, India
| | - P Rana
- Indraprastha Apollo Hospital (A.J., P.R.), New Delhi, India
| | - R Mangla
- Upstate University Hospital (R.M.), Syracuse, New York
| | - S Ellika
- From the University of Rochester Medical Center (N.S., S.E., J.A., S.P., S.M.), Rochester, New York
| | - J Almast
- From the University of Rochester Medical Center (N.S., S.E., J.A., S.P., S.M.), Rochester, New York
| | - S Puri
- From the University of Rochester Medical Center (N.S., S.E., J.A., S.P., S.M.), Rochester, New York
| | - S P Meyers
- From the University of Rochester Medical Center (N.S., S.E., J.A., S.P., S.M.), Rochester, New York
| |
Collapse
|
7
|
Nagy DG, Fedorcsák I, Bagó AG, Gáti G, Martos J, Szabó P, Rajnai H, Kenessey I, Borbély K. Therapy Defining at Initial Diagnosis of Primary Brain Tumor-The Role of 18F-FET PET/CT and MRI. Biomedicines 2023; 11:biomedicines11010128. [PMID: 36672636 PMCID: PMC9855996 DOI: 10.3390/biomedicines11010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Primary malignant brain tumors are heterogeneous and infrequent neoplasms. Their classification, therapeutic regimen and prognosis have undergone significant development requiring the innovation of an imaging diagnostic. The performance of enhanced magnetic resonance imaging depends on blood-brain barrier function. Several studies have demonstrated the advantages of static and dynamic amino acid PET/CT providing accurate metabolic status in the neurooncological setting. The aim of our single-center retrospective study was to test the primary diagnostic role of amino acid PET/CT compared to enhanced MRI. Emphasis was placed on cases prior to intervention, therefore, a certain natural bias was inevitable. In our analysis for newly found brain tumors 18F-FET PET/CT outperformed contrast MRI and PWI in terms of sensitivity and negative predictive value (100% vs. 52.9% and 36.36%; 100% vs. 38.46% and 41.67%), in terms of positive predictive value their performance was roughly the same (84.21 % vs. 90% and 100%), whereas regarding specificity contrast MRI and PWI were superior (40% vs. 83.33% and 100%). Based on these results the superiority of 18F-FET PET/CT seems to present incremental value during the initial diagnosis. In the case of non-enhancing tumors, it should always be suggested as a therapy-determining test.
Collapse
Affiliation(s)
- Dávid Gergő Nagy
- National Institute of Mental Health, Neurology and Neurosurgery, 1145 Budapest, Hungary
| | - Imre Fedorcsák
- National Institute of Mental Health, Neurology and Neurosurgery, 1145 Budapest, Hungary
| | - Attila György Bagó
- National Institute of Mental Health, Neurology and Neurosurgery, 1145 Budapest, Hungary
| | - Georgina Gáti
- National Institute of Mental Health, Neurology and Neurosurgery, 1145 Budapest, Hungary
| | - János Martos
- National Institute of Mental Health, Neurology and Neurosurgery, 1145 Budapest, Hungary
| | | | - Hajnalka Rajnai
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - István Kenessey
- National Cancer Registry, National Institute of Oncology, 1122 Budapest, Hungary
- Pathology, Forensic and Insurance Medicine, Semmelweis University, 1091 Budapest, Hungary
- Correspondence:
| | - Katalin Borbély
- PET/CT Outpatient Department, National Institute of Oncology, 1122 Budapest, Hungary
| |
Collapse
|