1
|
Yang Q, Zheng W, Zhao Y, Shi Y, Wang Y, Sun H, Xu X. Advancing dentin remineralization: Exploring amorphous calcium phosphate and its stabilizers in biomimetic approaches. Dent Mater 2024; 40:1282-1295. [PMID: 38871525 DOI: 10.1016/j.dental.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVE This review elucidates the mechanisms underpinning intrafibrillar mineralization, examines various amorphous calcium phosphate (ACP) stabilizers employed in dentin's intrafibrillar mineralization, and addresses the challenges encountered in clinical applications of ACP-based bioactive materials. METHODS The literature search for this review was conducted using three electronic databases: PubMed, Web of Science, and Google Scholar, with specific keywords. Articles were selected based on inclusion and exclusion criteria, allowing for a detailed examination and summary of current research on dentin remineralization facilitated by ACP under the influence of various types of stabilizers. RESULTS This review underscores the latest advancements in the role of ACP in promoting dentin remineralization, particularly intrafibrillar mineralization, under the regulation of various stabilizers. These stabilizers predominantly comprise non-collagenous proteins, their analogs, and polymers. Despite the diversity of stabilizers, the mechanisms they employ to enhance intrafibrillar remineralization are found to be interrelated, indicating multiple driving forces behind this process. However, challenges remain in effectively designing clinically viable products using stabilized ACP and maximizing intrafibrillar mineralization with limited materials in practical applications. SIGNIFICANCE The role of ACP in remineralization has gained significant attention in dental research, with substantial progress made in the study of dentin biomimetic mineralization. Given ACP's instability without additives, the presence of ACP stabilizers is crucial for achieving in vitro intrafibrillar mineralization. However, there is a lack of comprehensive and exhaustive reviews on ACP bioactive materials under the regulation of stabilizers. A detailed summary of these stabilizers is also instrumental in better understanding the complex process of intrafibrillar mineralization. Compared to traditional remineralization methods, bioactive materials capable of regulating ACP stability and controlling release demonstrate immense potential in enhancing clinical treatment standards.
Collapse
Affiliation(s)
- Qingyi Yang
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Wenqian Zheng
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Yuping Zhao
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Yaru Shi
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Yi Wang
- Graduate Program in Applied Physics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Hongchen Sun
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Xiaowei Xu
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
2
|
Wang YL, Lin HC, Liang T, Lin JY, Simmer J, Hu JC, Wang SK. ENAM Mutations Can Cause Hypomaturation Amelogenesis Imperfecta. J Dent Res 2024; 103:662-671. [PMID: 38716742 PMCID: PMC11122092 DOI: 10.1177/00220345241236695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
Amelogenesis imperfecta (AI) is a diverse group of inherited diseases featured by various presentations of enamel malformations that are caused by disturbances at different stages of enamel formation. While hypoplastic AI suggests a thickness defect of enamel resulting from aberrations during the secretory stage of amelogenesis, hypomaturation AI indicates a deficiency of enamel mineralization and hardness established at the maturation stage. Mutations in ENAM, which encodes the largest enamel matrix protein, enamelin, have been demonstrated to cause generalized or local hypoplastic AI. Here, we characterized 2 AI families with disparate hypoplastic and hypomaturation enamel defects and identified 2 distinct indel mutations at the same location of ENAM, c588+1del and c.588+1dup. Minigene splicing assays demonstrated that they caused frameshifts and truncation of ENAM proteins, p.Asn197Ilefs*81 and p.Asn197Glufs*25, respectively. In situ hybridization of Enam on mouse mandibular incisors confirmed its restricted expression in secretory stage ameloblasts and suggested an indirect pathogenic mechanism underlying hypomaturation AI. In silico analyses indicated that these 2 truncated ENAMs might form amyloid structures and cause protein aggregation with themselves and with wild-type protein through the added aberrant region at their C-termini. Consistently, protein secretion assays demonstrated that the truncated proteins cannot be properly secreted and impede secretion of wild-type ENAM. Moreover, compared to the wild-type, overexpression of the mutant proteins significantly increased endoplasmic reticulum stress and upregulated the expression of unfolded protein response (UPR)-related genes and TNFRSF10B, a UPR-controlled proapoptotic gene. Caspase, terminal deoxynucleotidyl transferase UTP nick-end labeling (TUNEL), and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays further revealed that both truncated proteins, especially p.Asn197Ilefs*81, induced cell apoptosis and decreased cell survival, suggesting that the 2 ENAM mutations cause AI through ameloblast cell pathology and death rather than through a simple loss of function. This study demonstrates that an ENAM mutation can lead to generalized hypomaturation enamel defects and suggests proteinopathy as a potential pathogenesis for ENAM-associated AI.
Collapse
Affiliation(s)
- Y.-L. Wang
- Department of Dentistry, National Taiwan University School of Dentistry, Taipei City, Taiwan
- Department of Pediatric Dentistry, National Taiwan University Children’s Hospital, Taipei City, Taiwan
| | - H.-C. Lin
- Department of Dentistry, National Taiwan University School of Dentistry, Taipei City, Taiwan
| | - T. Liang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - J.C.-Y. Lin
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, National Defense Medical University, Taipei City, Taiwan
| | - J.P. Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - J.C.-C. Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - S.-K. Wang
- Department of Dentistry, National Taiwan University School of Dentistry, Taipei City, Taiwan
- Department of Pediatric Dentistry, National Taiwan University Children’s Hospital, Taipei City, Taiwan
| |
Collapse
|
3
|
Liao Y, Pan T, Xing X. Regenerative Endodontic Treatment in Dentinogenesis Imperfecta-Induced Apical Periodontitis. Case Rep Dent 2024; 2024:5128588. [PMID: 38223911 PMCID: PMC10787646 DOI: 10.1155/2024/5128588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/28/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024] Open
Abstract
Pulp involvement of immature permanent teeth with dentinogenesis imperfecta is challenging and could lead to extraction. A case of dentinogenesis imperfecta-induced periapical periodontitis of an immature permanent tooth was treated with regenerative endodontic treatment (RET), and root maturation was observed in 12-month follow-up. An 8-year-old girl presented acute pain and swelling in central mandibular region. Clinical and radiographic examination revealed "shell teeth" appearance of teeth 31, 41, and 42. Periapical lesion of tooth 31 was observed. Tooth 41 was previously treated with apexification. RET was planned and carried out for the necrotic tooth (tooth 31) with dentinogenesis imperfecta. The 1-, 3-, 7-, and 12-month postoperative recall revealed complete healing of periapical lesions. Root maturation characterized by elongation of root, thickening of dentinal walls, and closure of root apex was observed with radiographic examinations. We show that RET could be a desirable treatment for necrotic immature permanent teeth with dentinogenesis imperfecta and lead to resolution of endodontic lesions as well as maturation of dental root. The findings of this case suggest that RET should be considered by endodontist and pediatric dentist to treat teeth with similar dental anomalies and apical periodontitis.
Collapse
Affiliation(s)
- Ying Liao
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Ting Pan
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Xianghui Xing
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| |
Collapse
|
4
|
Nasseri S, Parsa S, Vahabzadeh Z, Baban B, Khademerfan MB, Nikkhoo B, Rastegar Khosravi M, Bahrami S, Fathi F. CRISPR/Cas9-Induced Fam83h Knock-out Leads to Impaired Wnt/β-Catenin Pathway and Altered Expression of Tooth Mineralization Genes in Mice. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3673. [PMID: 38269199 PMCID: PMC10804060 DOI: 10.30498/ijb.2023.391902.3673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/19/2023] [Indexed: 01/26/2024]
Abstract
Background Dental enamel formation is a complex process that is regulated by various genes. One such gene, Family With Sequence Similarity 83 Member H (Fam83h), has been identified as an essential factor for dental enamel formation. Additionally, Fam83h has been found to be potentially linked to the Wnt/β-catenin pathway. Objectives This study aimed to investigate the effects of the Fam83h knockout gene on mineralization and formation of teeth, along with mediators of the Wnt/β-catenin pathway as a development aspect in mice. Materials and Methods To confirm the Fam83h-KnockOut mice, both Sanger sequencing and Western blot methods were used. then used qPCR to measure the expression levels of genes related to tooth mineralization and formation of dental root, including Fam20a, Dspp, Dmp1, Enam, Ambn, Sppl2a, Mmp20, and Wnt/β-catenin pathway mediators, in both the Fam83h-Knockout and wild-type mice at 5, 11 and 18 days of age. also the expression level of Fgf10 and mediators of the Wnt/β-catenin pathway was measured in the skin of both Knockout and wild-type mice using qPCR. A histological assessment was then performed to further investigate the results. Results A significant reduction in the expression levels of Ambn, Mmp20, Dspp, and Fgf10 in the dental root of Fam83h-Knockout mice compared to their wild-type counterparts was demonstrated by our results, indicating potential disruptions in tooth development. Significant down-regulation of CK1a, CK1e, and β-catenin in the dental root of Fam83h-Knockout mice was associated with a reduction in mineralization and formation-related gene. Additionally, the skin analysis of Fam83h-Knockout mice revealed reduced levels of Fgf10, CK1a, CK1e, and β-catenin. Further histological assessment confirmed that the concurrent reduction of Fgf10 expression level and Wnt/β-catenin genes were associated with alterations in hair follicle maturation. Conclusions The concurrent reduction in the expression level of both Wnt/β-catenin mediators and mineralization-related genes, resulting in the disruption of dental mineralization and formation, was caused by the deficiency of Fam83h. Our findings suggest a cumulative effect and multi-factorial interplay between Fam83h, Wnt/Β-Catenin signaling, and dental mineralization-related genes subsequently, during the dental formation process.
Collapse
Affiliation(s)
- Sherko Nasseri
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Molecular Medicine and Medical biotechnology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sara Parsa
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zakaria Vahabzadeh
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia
| | - Mohammad Bagher Khademerfan
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Molecular Medicine and Medical biotechnology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bahram Nikkhoo
- Department of Pathology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Rastegar Khosravi
- Department of Endodontics, Faculty of Dentistry, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Saman Bahrami
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fardin Fathi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
5
|
Liang T, Smith CE, Hu Y, Zhang H, Zhang C, Xu Q, Lu Y, Qi L, Hu JCC, Simmer JP. Dentin defects caused by a Dspp -1 frameshift mutation are associated with the activation of autophagy. Sci Rep 2023; 13:6393. [PMID: 37076504 PMCID: PMC10115861 DOI: 10.1038/s41598-023-33362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023] Open
Abstract
Dentin sialophosphoprotein (DSPP) is primarily expressed by differentiated odontoblasts (dentin-forming cells), and transiently expressed by presecretory ameloblasts (enamel-forming cells). Disease-causing DSPP mutations predominantly fall into two categories: 5' mutations affecting targeting and trafficking, and 3' - 1 frameshift mutations converting the repetitive, hydrophilic, acidic C-terminal domain into a hydrophobic one. We characterized the dental phenotypes and investigated the pathological mechanisms of DsppP19L and Dspp-1fs mice that replicate the two categories of human DSPP mutations. In DsppP19L mice, dentin is less mineralized but contains dentinal tubules. Enamel mineral density is reduced. Intracellular accumulation and ER retention of DSPP is observed in odontoblasts and ameloblasts. In Dspp-1fs mice, a thin layer of reparative dentin lacking dentinal tubules is deposited. Odontoblasts show severe pathosis, including intracellular accumulation and ER retention of DSPP, strong ubiquitin and autophagy activity, ER-phagy, and sporadic apoptosis. Ultrastructurally, odontoblasts show extensive autophagic vacuoles, some of which contain fragmented ER. Enamel formation is comparable to wild type. These findings distinguish molecular mechanisms underlying the dental phenotypes of DsppP19L and Dspp-1fs mice and support the recently revised Shields classification of dentinogenesis imperfecta caused by DSPP mutations in humans. The Dspp-1fs mice may be valuable for the study of autophagy and ER-phagy.
Collapse
Affiliation(s)
- Tian Liang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA.
| | - Charles E Smith
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
- Department of Anatomy & Cell Biology, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, Canada
| | - Yuanyuan Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| | - Hong Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| | - Chuhua Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| | - Qian Xu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave., Dallas, TX, 75246, USA
| | - Yongbo Lu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave., Dallas, TX, 75246, USA
| | - Ling Qi
- Department of Molecular & Integrative Physiology, Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, 1000 Wall St., Ann Arbor, MI, 48105, USA
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| | - James P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| |
Collapse
|
6
|
Zhang Z, Huang G, Huang Y, Liu S, Chen F, Gao X, Dong Y, Tian H. Novel dentin sialophosphoprotein gene frameshift mutations affect dentin mineralization. Arch Oral Biol 2023; 151:105701. [PMID: 37084484 DOI: 10.1016/j.archoralbio.2023.105701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/23/2023]
Abstract
OBJECTIVE This study aimed to identify candidate genes for inheritable dentin defects in three Chinese pedigrees and characterize the property of affected teeth. DESIGN Clinical and radiological features were recorded for the affected individuals. Genomic DNA obtained from peripheral venous blood or saliva were analyzed by whole-exome sequencing. The density and microhardness of affected dentin was measured. Scanning electron microscopy (SEM) was also performed to obtain the microstructure phenotype. RESULTS 1) General appearance: the affected dentitions shared yellowish-brown or milky color. Radiographs showed that the pulp cavity and root canals were obliterated in varying degrees or exhibited a pulp aspect in the 'thistle tube'. Some patients exhibited periapical infections without pulpal exposure, and some affected individuals showed shortened, abnormally thin roots accompanied by severe alveolar bone loss. 2) Genomic analysis: three new frameshift mutations (NM_014208.3: c.2833delA, c.2852delGand c.3239delA) were identified in exon 5 of dentin sialophosphoprotein (DSPP) gene, altering dentin phosphoprotein (DPP) as result. In vitro studies showed that the density and microhardness of affected dentin were decreased, the dentinal tubules were sparse and arranged disorderly, and the dentinal-enamel-junction (DEJ) was abnormal. CONCLUSIONS In this study, we identified three novel frameshift mutations of dentin sialophosphoprotein gene related to inherited dentin defects. These mutations are speculated to cause abnormal coding of dentin phosphoprotein C-terminus, which affect dentin mineralization. These results expand the spectrum of dentin sialophosphoprotein gene mutations causing inheritable dentin defects and broaden our understanding of the biological mechanisms by which dentin forms.
Collapse
Affiliation(s)
- Zhenwei Zhang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Guibin Huang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Yu Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health and Science Center, Beijing, PR China
| | - Siyi Liu
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Xuejun Gao
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Yanmei Dong
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China.
| | - Hua Tian
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China.
| |
Collapse
|
7
|
Winchester EW, Hardy A, Cotney J. Integration of multimodal data in the developing tooth reveals candidate regulatory loci driving human odontogenic phenotypes. FRONTIERS IN DENTAL MEDICINE 2022; 3:1009264. [PMID: 37034481 PMCID: PMC10078798 DOI: 10.3389/fdmed.2022.1009264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Human odontogenic aberrations such as abnormal tooth number and delayed tooth eruption can occur as a symptom of rare syndromes or, more commonly, as nonsyndromic phenotypes. These phenotypes can require extensive and expensive dental treatment, posing a significant burden. While many dental phenotypes are heritable, most nonsyndromic cases have not been linked to causal genes. We demonstrate the novel finding that common sequence variants associated with human odontogenic phenotypes are enriched in developmental craniofacial enhancers conserved between human and mouse. However, the bulk nature of these samples obscures if this finding is due to the tooth itself or the surrounding tissues. We therefore sought to identify enhancers specifically active in the tooth anlagen and quantify their contribution to the observed genetic enrichments. We systematically identified 22,001 conserved enhancers active in E13.5 mouse incisors using ChIP-seq and machine learning pipelines and demonstrated biologically relevant enrichments in putative target genes, transcription factor binding motifs, and in vivo activity. Multi-tissue comparisons of human and mouse enhancers revealed that these putative tooth enhancers had the strongest enrichment of odontogenic phenotype-associated variants, suggesting a role for dysregulation of tooth developmental enhancers in human dental phenotypes. The large number of these regions genome-wide necessitated prioritization of enhancer loci for future investigations. As enhancers modulate gene expression, we prioritized regions based on enhancers' putative target genes. We predicted these target genes and prioritized loci by integrating chromatin state, bulk gene expression and coexpression, GWAS variants, and cell type resolved gene expression to generate a prioritized list of putative odontogenic phenotype-driving loci active in the developing tooth. These genomic regions are of particular interest for downstream experiments determining the role of specific dental enhancer:gene pairs in odontogenesis.
Collapse
Affiliation(s)
| | - Alexis Hardy
- Master of Genetics Program, Paris Diderot University,
Paris, France
| | - Justin Cotney
- Department of Genetics and Genome Sciences, University of
Connecticut School of Medicine, Farmington, CT, United States
- Institute for Systems Genomics, University of Connecticut,
Storrs, CT, United States
| |
Collapse
|
8
|
The Modified Shields Classification and 12 Families with Defined DSPP Mutations. Genes (Basel) 2022; 13:genes13050858. [PMID: 35627243 PMCID: PMC9141616 DOI: 10.3390/genes13050858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022] Open
Abstract
Mutations in Dentin Sialophosphoprotein (DSPP) are known to cause, in order of increasing severity, dentin dysplasia type-II (DD-II), dentinogenesis imperfecta type-II (DGI-II), and dentinogenesis imperfecta type-III (DGI-III). DSPP mutations fall into two groups: a 5′-group that affects protein targeting and a 3′-group that shifts translation into the −1 reading frame. Using whole-exome sequence (WES) analyses and Single Molecule Real-Time (SMRT) sequencing, we identified disease-causing DSPP mutations in 12 families. Three of the mutations are novel: c.53T>C/p.(Val18Ala); c.3461delG/p.(Ser1154Metfs*160); and c.3700delA/p.(Ser1234Alafs*80). We propose genetic analysis start with WES analysis of proband DNA to identify mutations in COL1A1 and COL1A2 causing dominant forms of osteogenesis imperfecta, 5′-DSPP mutations, and 3′-DSPP frameshifts near the margins of the DSPP repeat region, and SMRT sequencing when the disease-causing mutation is not identified. After reviewing the literature and incorporating new information showing distinct differences in the cell pathology observed between knockin mice with 5′-Dspp or 3′-Dspp mutations, we propose a modified Shields Classification based upon the causative mutation rather than phenotypic severity such that patients identified with 5′-DSPP defects be diagnosed as DGI-III, while those with 3′-DSPP defects be diagnosed as DGI-II.
Collapse
|