1
|
He B, Zhang Y, Liu H, Tang M, Yang K, Cheng S, Shen J, Wei Y, Deng W, Zhao Q, Yang GY. An Endocellulase-Triggered NO Targeted-Release Enzyme-Prodrug Therapy System and Its Application in Ischemia Injury. Adv Healthc Mater 2024:e2401599. [PMID: 38973653 DOI: 10.1002/adhm.202401599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/18/2024] [Indexed: 07/09/2024]
Abstract
Nitric oxide (NO) is a crucial gaseous signaling molecules in regulating cardiovascular, immune, and nervous systems. Controlled and targeted NO delivery is imperative for treating cancer, inflammation, and cardiovascular diseases. Despite various enzyme-prodrug therapy (EPT) systems facilitating controlled NO release, their clinical utility is hindered by nonspecific NO release and undesired metabolic consequence. In this study, a novel EPT system is presented utilizing a cellobioside-diazeniumdiolate (Cel2-NO) prodrug, activated by an endocellulase (Cel5A-h38) derived from the rumen uncultured bacterium of Hu sheep. This system demonstrates nearly complete orthogonality, wherein Cel2-NO prodrug maintains excellent stability under endogenous enzymes. Importantly, Cel5A-h38 efficiently processes the prodrug without recognizing endogenous glycosides. The targeted drug release capability of the system is vividly illustrated through an in vivo near-infrared imaging assay. The precise NO release by this EPT system exhibits significant therapeutic potential in a mouse hindlimb ischemia model, showcasing reductions in ischemic damage, ambulatory impairment, and modulation of inflammatory responses. Concurrently, the system enhances tissue repair and promotes function recovery efficacy. The novel EPT system holds broad applicability for the controlled and targeted delivery of essential drug molecules, providing a potent tool for treating cardiovascular diseases, tumors, and inflammation-related disorders.
Collapse
Affiliation(s)
- Bo He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yating Zhang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Huaping Liu
- Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University, Tianjin, 300353, China
| | - Manuel Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ke Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Silian Cheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Shen
- Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University, Tianjin, 300353, China
| | - Yongzhen Wei
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Weiliang Deng
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Key Raw Material, Shanghai Academy of Experimental Medicine, Shanghai, 201401, China
| |
Collapse
|
2
|
Schwartz M, Perrot T, Beurton J, Zannini F, Morel-Rouhier M, Gelhaye E, Neiers F, Schaniel D, Favier F, Jacquot JP, Leroy P, Clarot I, Boudier A, Didierjean C. Structural insights into the interactions of glutathione transferases with a nitric oxide carrier and sodium nitroprusside. Biochem Biophys Res Commun 2023; 649:79-86. [PMID: 36758482 DOI: 10.1016/j.bbrc.2023.01.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
Glutathione transferases are detoxification enzymes with multifaceted roles, including a role in the metabolism and scavenging of nitric oxide (NO) compounds in cells. Here, we explored the ability of Trametes versicolor glutathione transferases (GSTs) from the Omega class (TvGSTOs) to bind metal-nitrosyl compounds. TvGSTOs have been studied previously for their ligandin role and are interesting models to study protein‒ligand interactions. First, we determined the X-ray structure of the TvGSTO3S isoform bound to the dinitrosyl glutathionyl iron complex (DNGIC), a physiological compound involved in the storage of nitric oxide. Our results suggested a different binding mode compared to the one previously described in human GST Pi 1 (GSTP1). Then, we investigated the manner in which TvGSTO3S binds three nonphysiological metal-nitrosyl compounds with different metal cores (iron, ruthenium and osmium). We assayed sodium nitroprusside, a well-studied vasodilator used in cases of hypertensive crises or heart failure. Our results showed that the tested GST can bind metal-nitrosyls at two distinct binding sites. Thermal shift analysis with six isoforms of TvGSTOs identified TvGSTO6S as the best interactant. Using the Griess method, TvGSTO6S was found to improve the release of nitric oxide from sodium nitroprusside in vitro, whereas the effects of human GST alpha 1 (GSTA1) and GSTP1 were moderate. Our results open new structural perspectives for understanding the interactions of glutathione transferases with metal-nitrosyl compounds associated with the biochemical mechanisms of NO uptake/release in biological systems.
Collapse
Affiliation(s)
- Mathieu Schwartz
- Université de Lorraine, CNRS, CRM2, F-54000, Nancy, France; CSGA, INRAE, University of Burgundy, CNRS, Institut Agro, F-21000, Dijon, France.
| | - Thomas Perrot
- Université de Lorraine, INRAE, IAM, F-54000, Nancy, France
| | - Jordan Beurton
- Université de Lorraine, CITHEFOR, F-54000, Nancy, France
| | | | | | - Eric Gelhaye
- Université de Lorraine, INRAE, IAM, F-54000, Nancy, France
| | - Fabrice Neiers
- CSGA, INRAE, University of Burgundy, CNRS, Institut Agro, F-21000, Dijon, France
| | | | | | | | - Pierre Leroy
- Université de Lorraine, INRAE, IAM, F-54000, Nancy, France
| | - Igor Clarot
- Université de Lorraine, CITHEFOR, F-54000, Nancy, France
| | - Ariane Boudier
- Université de Lorraine, CITHEFOR, F-54000, Nancy, France
| | | |
Collapse
|
3
|
Kondengadan SM, Bansal S, Yang C, Liu D, Fultz Z, Wang B. Click chemistry and drug delivery: A bird’s-eye view. Acta Pharm Sin B 2022; 13:1990-2016. [DOI: 10.1016/j.apsb.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/01/2022] Open
|
4
|
Russell TM, Richardson DR. Glutathione-S-Transferases as Potential Targets for Modulation of Nitric Oxide-Mediated Vasodilation. Biomolecules 2022; 12:biom12091292. [PMID: 36139130 PMCID: PMC9496536 DOI: 10.3390/biom12091292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Glutathione-S-transferases (GSTs) are highly promiscuous in terms of their interactions with multiple proteins, leading to various functions. In addition to their classical detoxification roles with multi-drug resistance-related protein-1 (MRP1), more recent studies have indicated the role of GSTs in cellular nitric oxide (NO) metabolism. Vasodilation is classically induced by NO through its interaction with soluble guanylate cyclase. The ability of GSTs to biotransform organic nitrates such as nitroglycerin for NO generation can markedly modulate vasodilation, with this effect being prevented by specific GST inhibitors. Recently, other structurally distinct pro-drugs that generate NO via GST-mediated catalysis have been developed as anti-cancer agents and also indicate the potential of GSTs as suitable targets for pharmaceutical development. Further studies investigating GST biochemistry could enhance our understanding of NO metabolism and lead to the generation of novel and innovative vasodilators for clinical use.
Collapse
Affiliation(s)
- Tiffany M. Russell
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Brisbane 4111, Australia
| | - Des R. Richardson
- Department of Pathology and Biological Responses, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
- Correspondence: ; Tel.: +61-7-3735-7549
| |
Collapse
|