1
|
Wang Q, Chen S, Wang G, Zhang T, Gao Y. Integrated mendelian randomization analyses highlight AFF3 as a novel eQTL-mediated susceptibility gene in renal cancer and its potential mechanisms. BMC Cancer 2024; 24:739. [PMID: 38886730 PMCID: PMC11181572 DOI: 10.1186/s12885-024-12513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUNDS A growing number of expression quantitative trait loci (eQTLs) have been found to be linked with tumorigenesis. In this article, we employed integrated Mendelian randomization (MR) analyses to identify novel susceptibility genes in renal cancer (RC) and reveal their potential mechanisms. METHODS Two-sample MR analyses were performed to infer causal relationships between eQTLs, metabolites, and RC risks through the "TwoSampleMR" R package. Sensitivity analyses, such as heterogeneity, pleiotropy, and leave-one-out analysis, were used to assess the stability of our outcomes. Summary-data-based MR (SMR) analyses were used to verify the causal relationships among cis-eQTLs and RC risks via the SMR 1.3.1 software. RESULTS Our results provided the first evidence for AFF3 eQTL elevating RC risks, suggesting its oncogenic roles (IVW method; odds ratio (OR) = 1.0005; 95% confidence interval (CI) = 1.0001-1.0010; P = 0.0285; heterogeneity = 0.9588; pleiotropy = 0.8397). Further SMR analysis validated the causal relationships among AFF3 cis-eQTLs and RC risks (P < 0.05). Moreover, the TCGA-KIRC, the ICGC-RC, and the GSE159115 datasets verified that the AFF3 gene was more highly expressed in RC tumors than normal control via scRNA-sequencing and bulk RNA-sequencing (P < 0.05). Gene set enrichment analysis (GSEA) analysis identified six potential biological pathways of AFF3 involved in RC. As for the potential mechanism of AFF3 in RC, we concluded in this article that AFF3 eQTL could negatively modulate the levels of the X-11,315 metabolite (IVW method; OR = 0.9127; 95% CI = 0.8530-0.9765; P = 0.0081; heterogeneity = 0.4150; pleiotropy = 0.8852), exhibiting preventive effects against RC risks (IVW method; OR = 0.9987; 95% CI = 0.9975-0.9999; P = 0.0380; heterogeneity = 0.5362; pleiotropy = 0.9808). CONCLUSIONS We concluded that AFF3 could serve as a novel eQTL-mediated susceptibility gene in RC and reveal its potential mechanism of elevating RC risks via negatively regulating the X-11,315 metabolite levels.
Collapse
Affiliation(s)
- Qiming Wang
- Department of Urology, Jianhu Clinical Medical College of Yangzhou University, No. 666 South Ring Road, Yancheng, Jiangsu Province, 224700, China
| | - Shaopeng Chen
- Department of Urology, Jianhu Clinical Medical College of Yangzhou University, No. 666 South Ring Road, Yancheng, Jiangsu Province, 224700, China
| | - Gang Wang
- Department of Urology, Jianhu Clinical Medical College of Yangzhou University, No. 666 South Ring Road, Yancheng, Jiangsu Province, 224700, China
| | - Tielong Zhang
- Department of Urology, Jianhu Clinical Medical College of Yangzhou University, No. 666 South Ring Road, Yancheng, Jiangsu Province, 224700, China
| | - Yulong Gao
- Department of Urology, Jianhu Clinical Medical College of Yangzhou University, No. 666 South Ring Road, Yancheng, Jiangsu Province, 224700, China.
| |
Collapse
|
2
|
Domínguez-Mozo MI, García-Frontini Nieto MC, Gómez-Calcerrada MI, Pérez-Pérez S, García-Martínez MÁ, Villar LM, Villarrubia N, Costa-Frossard L, Arroyo R, Alvarez-Lafuente R. Mitochondrial Impairments in Peripheral Blood Mononuclear Cells of Multiple Sclerosis Patients. BIOLOGY 2022; 11:1633. [PMID: 36358334 PMCID: PMC9687791 DOI: 10.3390/biology11111633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
Abstract
Although impaired mitochondrial function has been proposed as a hallmark of multiple sclerosis (MS) disease, few studies focus on the mitochondria of immune cells. We aimed to compare the mitochondrial function of the peripheral blood mononuclear cells (PBMCs) from MS patients with (M+) and without (M-) lipid-specific oligoclonal immunoglobulin M bands (LS-OCMB), and healthydonors (HD). We conducted an exploratory cross-sectional study with 19 untreated MS patients (M+ = 9 and M- = 10) and 17 HDs. Mitochondrial superoxide anion production and mitochondrial mass in PBMCs were assessed without and with phytohemagglutinin by flow cytometry. The PBMCs' mitochondrial function was analyzed using Seahorse technology. Superoxide anion production corrected by the mitochondrial mass was higher in MS patients compared with HDs (p = 0.011). Mitochondrial function from M+ patients showed some impairments compared with M- patients. Without stimulus, we observed higher proton leak (p = 0.041) but lower coupling efficiency (p = 0.041) in M+ patients; and under stimulation, lower metabolic potential ECAR (p = 0.011), and lower stressed OCR/ECAR in the same patients. Exclusively among M+ patients, we described a higher mitochondrial dysfunction in the oldest ones. The mitochondrial impairments found in the PBMCs from MS patients, specifically in M+ patients, could help to better understand the disease's physiopathology.
Collapse
Affiliation(s)
- María Inmaculada Domínguez-Mozo
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - María Celeste García-Frontini Nieto
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - María Isabel Gómez-Calcerrada
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Silvia Pérez-Pérez
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - María Ángel García-Martínez
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Luisa María Villar
- Department of Immunology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| | - Noelia Villarrubia
- Department of Immunology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| | | | - Rafael Arroyo
- Department of Neurology, Hospital Universitario Quironsalud Madrid, 28223 Madrid, Spain
| | - Roberto Alvarez-Lafuente
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
4
|
Zeng H, Li M, Liu J, Zhu J, Cheng J, Li Y, Zhang J, Yang Z, Li L, Zhou H, Li S, Xia H, Zou Y, He J, Yang T. YTHDF2 Gene rs3738067 A>G Polymorphism Decreases Neuroblastoma Risk in Chinese Children: Evidence From an Eight-Center Case-Control Study. Front Med (Lausanne) 2021; 8:797195. [PMID: 34970571 PMCID: PMC8712649 DOI: 10.3389/fmed.2021.797195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/26/2021] [Indexed: 02/05/2023] Open
Abstract
Neuroblastoma is a primary malignancy mainly occurring in children. We have reported that polymorphisms of several N6-methyladenosine (m6A) RNA modification-related genes contributed to neuroblastoma risk in previous studies. YTHDF2, a "reader" of RNA m6A modification, is involved in cancer progression. Here, we estimated the association between a YTHDF2 gene rs3738067 A>G polymorphism and neuroblastoma susceptibility in 898 neuroblastoma patients and 1,734 healthy individuals from China. We found that the rs3738067 A>G could decrease neuroblastoma risk [AG vs. AA: adjusted odds ratio (OR) = 0.76, 95% confidence interval (CI) = 0.64-0.90, P = 0.002; AG/GG vs. AA: adjusted OR = 0.81, 95% CI = 0.69-0.95, P = 0.011). Besides, the rs3738067 AG/GG genotype was related to reduced neuroblastoma risk in the following subgroups: children aged 18 months and under, boys, patients with tumors originating from retroperitoneal, patients at clinical stage IV, and cases at clinical stages III plus IV. Importantly, false-positive report probability analysis proved our significant results worthy of close attention of. The expression quantitative trait locus analysis results revealed that the rs3738067 was associated with the expression of YTHDF2.
Collapse
Affiliation(s)
- Huijuan Zeng
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Meng Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jiabin Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yong Li
- Department of Pediatric Surgery, Hunan Children's Hospital, Changsha, China
| | - Jiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming, China
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yan Zou
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Jing He
| | - Tianyou Yang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Tianyou Yang
| |
Collapse
|